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This paper presents a novel approach to track a nonconvex
shape approximation of an extended target based on noisy point
measurements. For this purpose, a novel type of random
hypersurface model (RHM) called Level-set RHM is introduced that
models the interior of a shape with level-sets of an implicit function.
Based on the Level-set RHM, a nonlinear measurement equation can
be derived that allows to employ a standard Gaussian state estimator
for tracking an extended object even in scenarios with moderate
measurement noise. In this paper, shapes are described using
polygons, and shape regularization is applied using ideas from active
contour models.
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I. INTRODUCTION

In target tracking scenarios [1], the usual conditions
are high noise and only a few measurements per timestep.
As a consequence, common tracking algorithms have been
designed to model the target object as a point with no
extent. Nonetheless, as sensor quality increases and more
measurements become available, this assumption no
longer holds. A better approach to increase robustness and
accuracy is to explicitly model the target extent and
consider it in the algorithm.

Widely used shape approximations are in the form of
ellipses [2–4], sticks [5, 6], or rectangles [7, 8] [Fig. 1(a)].
Other approaches estimate shapes using Gaussian images
[9] and border parameterization [10]. However, in many
applications, measurements do not only originate from the
object boundary, but also from the interior of the target.
For these scenarios, standard fitting algorithms cannot be
applied [11]. In addition, shape tracking algorithms
usually do not consider scenarios where measurements
have individual, nonisotropic noise parameters, which
arise in the context of, e.g., sensor fusion [12]. Altogether,
an explicit model is needed that captures this wide range
of measurement characteristics.

Work has been done to model such scenarios in the
form of random hypersurface models (RHMs) [13].
Representations include approximations using circular
[Fig. 1(b)] and elliptical shapes, best suited for scenarios
with very low quality measurements, when high sensor
noise makes it almost impossible to obtain further details.
For scenarios with higher measurement quality, more
detail can be captured using star-convex shape models
[Fig. 1(c)]. This paper builds upon the theoretic concepts
of these works and presents a generalization for arbitrary,
simply connected shapes.

Besides the RHM approach to extended object
tracking [13–16], there are essentially two lines of work in
literature. First, particle filter methods [5, 17–19] have
been proposed for dealing with the nonlinearity of the
estimation problem. Second, random matrix theory
[20–25] allows to derive analytic expressions for targets
that are modeled as ellipses.

The main contribution is a generalized RHM that uses
level-sets for modeling targets [Fig. 1(d)]. In particular, in
this paper we are interested in targets with filled shapes,
i.e., where measurements are also generated from the
interior of the target. To the best of our knowledge, this is
the first extended object tracking method for explicitly
estimating detailed arbitrary nonconvex, and particularly
non-star-convex, geometric objects.

The remainder of this paper is structured as follows.
First, the general theoretical concepts of the models
involved in extended object tracking are outlined in
Section II. In Section III, the new Level-set RHMs are
introduced and explained in detail. An implementation of
Level-set RHMs using a polygonal shape representation is
described in Section IV, and a more detailed discussion in
Section V. In Section VI, the proposed approach is



Fig. 1. Representation models for extended objects.

Fig. 2. RHM for disk.

demonstrated and evaluated using synthetic data and
real-life data from an RGBD sensor, which captures both
color (RGB) and depth information from a scene. Finally,
this work concludes with a short summary and an outlook
to future work in Section VII.

II. MODELING EXTENDED OBJECTS

In this section, a probabilistic model for an extended
object to be tracked is described. This includes appropriate
models to specify the state to be estimated, the target
shape, the measurement generation process, and the
temporal evolution of the target.

A. Shape Model

This work focuses on tracking compact, simply
connected shapes. In other words, we are concerned with
closed shapes of finite size that may be filled, but which do
not contain holes. The parameters of the target shape are
represented with the parameter vector xp. Then, the set
S(xp) denotes the shape itself, including its interior. As the
shape may change in time, the parameters at the discrete
timestep k are written as x

p

k , and the shape as S(xp

k ).
Given that the shape will be stochastically associated

with noisy measurements, the uncertain knowledge about
the shape parameters is represented as the random vector
xp

k . Note that the state vector does not have to be limited

to the shape parameters only. Thus, the state vector xk is
assumed to contain xp

k , and additional parameters as
required by further models, such as a motion model or
others.

B. Measurement Model

At each timestep k, a set of point measurements
Yk = {y

k,1
, . . . , y

k,l
} becomes available. Each

measurement y
k,i

represents a position in Cartesian

coordinates, i.e., y
k,i

∈ R
d, where d is usually two or

three. It is not assumed that the number of measurements l
carries information about xk . The index i will be dropped
for legibility unless needed.

It is assumed that each measurement y
k

was generated

by a source z
k

that belongs to the shape S(xp

k ). However,
y

k
and z

k
are generally not equal, as observation by a

sensor is assumed to introduce noise. In this paper, this
sensor noise is assumed to be additive, zero-mean, and
Gaussian distributed, so that the relation between y

k
and

z
k

can be described as

y
k

= z
k
+ wk , (1)

where wk is denoted as the noise term, assumed to be a
realization of the random vector wk ∼ N (0, Cw

k ). The
covariance matrix Cw

k is determined by the sensor model.
The measurement noise term wk is assumed to be
stochastically independent from other noise terms and
from the state.

C. Dynamic Model

The dynamic model describes how the state xk evolves
in time between successive timesteps k and k + 1. A
motion model, for example, assumes that a position will
change in time following a velocity or acceleration
parameter. The system function describes this process, and
has the form

xk+1 = ak(xk, rk) , (2)

where rk represents the process noise.

III. LEVEL-SET RHMS

In this section we introduce Level-set RHMs. First, as
background, we present the concept of shape functions,
which allows us to describe shapes without needing an
explicit generative model for sources. Then, we explain
the ideas behind RHMs. Finally, we describe our
contribution in detail.

A. Shape Function

When estimating shape parameters, a commonly used
concept is the so-called shape functions, which return for a
point z̃ a scalar that determines how well it fits a given
shape. More formally, let there be a given shape S(xp

k ).
We say that the continuous function φ(xp

k , z̃) is a shape
function of S(xp

k ) iff it holds that

S
(
x

p

k

) = {z̃ ∈ R
d | φ(xp

k , z̃) = 0} , (3)



i.e., only points that are part of the shape can return a
value of 0. A widely used shape function is the Euclidian
distance function [26]. It can be generalized as the
Mahalanobis distance function, which, for a given
positive-definite matrix �, is defined as

φM (xp

k , z̃) = min
z
k
∈S(xp

k )

√
(z̃ − z

k
)T · �−1 · (z̃ − z

k
) , (4)

i.e., the smallest Mahalanobis distance to a point in S(xp

k ).
Note that the Mahalanobis distance is equivalent to the
Euclidian distance for � = I.

A usual extension to shape functions, and the focus of
this paper, are signed shape functions, identical in function
but which return a negative value if z̃ is outside the shape.1

These include the signed Euclidian and Mahalanobis
distance functions. An example follows.

Example 1 (Shape Function of a Circle)
Let S(xp

k ) be the dark green circle in Fig. 2(a),
centered in the origin, and with the only shape parameter
x

p

k being the radius rk. In addition, let y
k

be a
measurement. Then, we can design the signed Euclidian
distance function in the form of

φc(xp

k , z̃) = rk − ||z̃|| , (5)

where || · || is the Euclidian norm. It can be seen that
φc(xp

k , z̃) is positive if z̃ is inside the circle, 0 if z̃ belongs
to S(xp

k ), and negative if outside.

Using a shape function and (1), we can derive easily a
measurement function for a measurement y

k
with source

z
k

in the form of

h(xk, yk
, wk) := φ(xp

k , z
k
)

= φ(xp

k , y
k
− wk) , (6)

leading to the measurement equation

h(xk, yk
, wk) = 0 . (7)

This is an implicit measurement equation, where the
target state, the measurement, and the measurement noise
are propagated through h(·, ·, ·) and then associated with
the pseudo-measurement 0. Thus, informally, it can be
said that the objective is for the filter to estimate xk so that
h(·, ·, ·) is as close to 0 as possible. Note that the unknown
source z

k
is not probabilistically modeled, and instead

only described through the relationship in (1). This
approach, particularly popular in the field of shape fitting,
allows for simple and fast estimation. In particular, this
avoids the requirement of an explicit generative model for
the selection of a source (such as in [5]), which can
become extremely complex for filled nonconvex shapes.
However, this approach implicitly assumes that the source
is the closest point to the measurement, according to the
used metric such as (4). This assumption is appropriate for

1 Many implementations of signed shape functions use the negative sign
for points inside the shape. However, adapting them to the convention
used in this paper is only a matter of flipping the sign.

low noise levels, as the closest source is a good
approximation of the true source. For higher noise levels,
however, a mechanism to compensate this problem is
needed, as the assumption of an incorrect source causes
estimation bias. This challenge is discussed in Section
V-D, and a more detailed treatment can be found in [27].

Note that in this paper we are concerned with filled
shapes. For these, a measurement function such as (6) is
not helpful, as shown in [28, 29]. For visualization, let us
describe the following thought experiment where the disk
in Fig. 2(a) is the target. As S(xp

k ) is a filled target, the
shape function in the interior also returns 0. In this
imaginary case, the estimator is initialized with a much
larger disk which completely contains the target. Then,
after receiving measurements from the target, it turns out
that they are all in the interior of the oversized estimate,
and thus, φ(xp

k , z
k
) will always return the desired value of

0. In consequence, the estimator cannot recognize that the
estimate is too large, and remains stuck with the incorrect
result. Section III-B introduces an approach to deal with
these filled shapes.

B. RHMs

An RHM [13] is a probabilistic model to describe how
to generate single measurements from an extended shape.
The key idea is to interpret a target shape as the
transformation of an underlying shape, such as its
boundary, using a random variable sk. This process can be
visualized by describing the model for generating a
measurement. First, a transformed version of the
underlying shape is produced by randomly drawing a
transformation factor sk from sk. Then, the measurement
source is selected from this transformed shape. Finally, the
measurement source is corrupted during observation by
noise as described by (1). Note that, as the transformed
shape is described with a shape function, we do not model
how the source is selected from its transformed shape.

The transformation can interpret the factor sk in any
way [7, 14, 16], depending on the model, and does not
need to be linear. The distribution of sk. represents how
probable it is that each transformed shape generates a
source, and is assumed to be known a priori. In addition, it
is assumed that the transformation factors are
stochastically independent from each other and from the
state. An example with a circular disk follows.

Example 2 (RHM with a circular disk)
Let S(xp

k ) be the disk in Fig. 2(b), i.e., the dark green
circle and its interior, centered in the origin, and with the
only shape parameter x

p

k being the radius rk . In this
example, we describe S(xp

k ) as an RHM by transforming
its boundary (dark green circle), by using the
transformation parameter sk ∼ U(0, 1).

We model an observed measurement as being the
result of the following process. First, a factor sk drawn
from Sk scales the circular boundary homogeneously, as
seen in Fig. 2(b), producing a circle of radius sk · rk. Then,
the measurement source z

k
is selected from this scaled



Fig. 3. Selection of shapes.

circle [Fig. 2(c)]. Finally, the source is corrupted by
sensor noise as described in (1), producing the
measurement y

k
. Note that we are not interested in how

the source z
k

is selected from the scaled circle.
In a similar fashion as (5), we obtain the shape

function for the transformed shape

φs(xp

k , z̃) = sk · rk − ||z̃|| . (8)

Using this shape function, we can derive a measurement
equation. As in (6), we fuse (1) and (8) to obtain the
following measurement function

h(xk, yk
, wk, sk) = φs(xp

k , z
k
)

= sk · rk − ||z
k
||

:= sk · rk − ||y
k
− wk|| ,

(9)

leading to the measurement equation

h(xk, yk
, wk, sk) = 0 . (10)

Note that, because of the measurement noise, the exact
sk used to generate y

k
is not known. In consequence, we

interpret sk as an additional noise term.

RHMs can be contrasted to the approach in Section
III-A, in that RHMs model the selection of the transformed
shape explicitly through sk, but leave the selection of the
source from the transformed shape implicit.

C. Level-Set RHMs

While a transformation mechanism for circles is
simple, i.e., scaling the radius, for more complex shapes a
way to implement the transformation is not
straightforward. Fig. 3 shows examples of these shapes. A
circle is an example of a convex shape. A shape S(xp

k ) is
called convex if, for every pair of points that belong to it,
the segment joining both points is completely inside
S(xp

k ). Shapes such as the M-shape [Fig. 3(c)] are clearly
not convex, however, they are star-convex. The defining
property of a star-convex shape is that there exists at least
a point m of S(xp

k ), so that, for every point in S(xp

k ), the
segment connecting it with m is completely contained in
S(xp

k ). This does not apply to shapes like the Z-shape [Fig.
3(a)] or the H-shape [Fig. 3(b)], as no such point exists for
them. Thus, while the interior of a star-convex shape can
be described by shrinking its boundary towards m, as

Fig. 4. Z-shape object tracked using different RHMs.

applied in [16], this cannot work for shapes like those in
Fig. 3(a).

Fig. 4 shows a real-life Z-shape as observed by an
RGBD sensor, and then estimated using different RHMs.
Fig. 4(a) is tracked using a circle RHM [30], while Fig.
4(b) uses an elliptic RHM [31]. Both are suitable for
tracking the basic size of the object, but cannot estimate
any further details. For Fig. 4(c) a star-convex RHM [16]
is used, which is capable of estimating a much more
detailed form, as long as the target shape is star-convex.
However, given that the Z-shape does not fulfill this
condition, the estimate is not close to the target. This
paper aims to work upon these established concepts in
order to track arbitrary, nonconvex shapes.

The main task to develop a more general RHM is to
find a suitable and general transformation mechanism for
arbitrary filled shapes. As described in Section III-A, the
shape function of a filled shape is not useful for describing
its interior, where all points have a value of 0. Instead, let
us focus on the shape function of its boundary φb(xp

k , z̃).
Thus, for the Level-set RHMs that are introduced in this
paper, shape transformation is implemented using the
concepts of level-sets of the boundary shape functions.

DEFINITION 1 (LEVEL-SET) For a given shape function
φb(xp

k , z̃), a level-set Lφ(c) is the region where the shape
function takes the value of c, i.e.,

Lφ(c) := {z̃ ∈ R
d | φb(xp

k , z̃) = c}. (11)

It can be seen that every point z̃ belongs to a level-set. In
addition, the target shape boundary is by definition Lφ(0).
Fig. 5 shows the level-sets of the shapes in Fig. 3 using the
signed Euclidian distance (implemented in Section IV-B),
with the highlighted level-set Lφ(0.3). The explicit
calculation of level-sets is not straightforward, and a



Fig. 5. Level-sets for different shapes in Fig. 3. Shape function in gray, level-set Lφ(0.3) in red.

variety of modeling techniques exist [26, 32, 33].
However, Level-set RHMs do not require an explicit
calculation for level-sets.

It makes sense to assume that the target shape can be
interpreted as a closed set of points. From this assumption,
it follows that φb(xp

k , z̃) must have a maximum, as only
the bounded interior of the shape returns positive values.
Then, we proceed to define φmax(xp

k ) as

φmax(xp

k ) := max
z̃∈S(xp

k )
φb(xp

k , z̃) . (12)

In particular, S(xp

k ) can be seen as the union of all
level-sets Lφ(c) for c ∈ [0, φmax(xp

k )].
From this, a generative model for all points in S(xp

k )
can be derived in a similar fashion as Example 2, using
level-sets as the transformation. The distribution of the
transformation parameter sk can be arbitrary, but its
support is assumed to be [0, 1]. We model an observed
measurement as being the result of the following process.
First, a transformation factor sk is drawn from sk ,
producing the level-set Lφ(sk · φmax(xp

k )). Then, the
measurement source z

k
is selected from this level-set. As

mentioned before, the mechanism of this selection is not
modeled explicitly. Then, as z

k
belongs to

Lφ(sk · φmax(xp

k )), by definition it follows that

φb(xp

k , z̃
k
) = sk · φmax(xp

k ) . (13)

Finally, the source is corrupted by sensor noise as
described in (1), producing the measurement y

k
.

Using (13), we can derive a shape function for the
transformed shape in the form of

φs(xp

k , z̃) = sk · φmax(xp

k ) − φb(xp

k , z̃). (14)

Finally, based on (1) and (14), and using ideas from
example 2, the following measurement function for a
measurement y

k
can be obtained in the form of

h(xk, yk
, wk , sk) := φs(xp

k , z
k
)

= φs(xp

k , y
k
− wk)

= sk · φmax(xp

k ) − φb(xp

k , y
k
− wk) ,

(15)

leading to the measurement equation

h(xk, yk
, wk, sk) = 0 . (16)

Similarly, as the sk that generated z
k

is not known, we
interpret sk as an additional noise term.

IV. LEVEL-SET RHMS USING POLYGONS

In this section, a Level-set RHM is implemented using
polygons to represent a wide variety of two-dimensional
shapes. The key properties of polygons are their simple
mathematical representation, great flexibility for
describing shapes, ease of implementation of a shape
function, and, as will be seen in Section V-C, they allow
for a straightforward approach for regularization. In
addition, polygons are a widely researched topic in fields
such as computer graphics and computer vision,
producing a wide background in literature for possible
model extensions.

A. Polygons

Let {bk,0, . . . , bk,n−1} be a sequence of n points in R
2.

The curve formed by the connected segments between
consecutive points is called a polygonal chain. This papers
deals with closed polygonal chains, i.e., where bk,n−1 is
also connected to bk,0. The points in the chain sequence
are referred as the vertices of the polygon.

The polygon parameters can be expressed with a
parameter vector. The representation used in this paper is

x
p

k = [
bT

k,0, . . . , b
T
k,n−1

]T
, (17)

where each point bk,j is represented in absolute Cartesian
coordinates. For simplicity, the index of a polygon point is
assumed to lie in Z/nZ, i.e., to wrap around the interval
[0, n – 1]. Thus, bk,n is equivalent to bk,0, and bk,−1 is
equivalent to bk,n−1. In this section, S(xp

k ) is used to
describe the filled polygon, i.e., the segments and the
interior area.

Note that the number of polygon vertices is assumed to
be known a priori. While approaches can be developed for
dynamically estimating the number of vertices to best
describe the target, we consider this topic to be out of the
scope of this work.



B. Boundary Shape Function

The boundary shape function to be used in polygonal
RHMs is the signed Mahalanobis distance, denoted as
φπ (xp

k , z̃). In order to describe it, first we need a function
d(xp

k , z̃) that returns the Mahalanobis distance between an
arbitrary point z̃ and the closest point in the boundary of
the polygon S(xp

k ). Usual choices for � are either I, in
case of isotropic noise or when speed is needed, or Cw

k for
the general case, especially when nonisotropic noise is
present.

A simple implementation is as follows. Let (u) be a
function that clamps u ∈ R to the interval [0, 1], defined as

clamp(u) =

⎧⎪⎨
⎪⎩

0, if u < 0

u, if 0 ≤ u ≤ 1

1, otherwise.

(18)

Then, for each segment j connecting bk,j and bk,j+1, the
point zπ

j
in the polygon that is closest to the given point z̃

can be determined with

uj := (z̃ − bk,j )T · �−1 · (bk,j+1 − bk,j )

(bk,j+1 − bk,j )T · �−1 · (bk,j+1 − bk,j )
(19)

and

zπ
j

= bk,j + clamp(uj ) ·
(
bk,j+1 − bk,j

)
. (20)

Finally, the minimum Mahalanobis distance between the
polygon and z̃ is simply

d(xp

k , z̃) = min
0≤j≤n−1

√
(z̃ − zπ

j )T · �−1 · (z̃ − zπ
j ). (21)

Thus, the complexity of the distance algorithm is in
O(n). The signed distance function follows from this, in
the form of

φπ (xp

k , z̃) :=
{

d(xp

k , z̃), if z̃ ∈ S
(
x

p

k

)
−d(xp

k , z̃), otherwise.
(22)

Checking if z̃ is inside S(xp

k ) can be done using, e.g.,
the odd-even rule or winding numbers [34]. These
algorithms are usually in O(n).

The only remaining piece is the calculation of
φπ

max(xp

k ), i.e., the maximum value of the shape function
for x

p

k . For polygons, there are usually many points whose
shape function evaluates to the maximum value. However,
we can exploit the fact that the set ZI of intersections of
vertex angle bisectors will always contain at least one of
those points. In other words, in order to find φπ

max(xp

k ), it is
sufficient to find the maximum value of φπ (xp

k , zI ) from
all intersections zI ∈ ZI . Fig. 6 shows an example of this
procedure. For the M-shape, four selected vertex angle
bisectors are shown in colored lines. From these bisectors,
the intersections A and B [Fig. 6(a)] yield the maximum
distances from ZI . The other bisector intersections lie
outside the shape, and thus, yield negative distances. In
Fig. 6(b), the distance function for points inside of the
shape is plotted. It can be verified that points A and B

Fig. 6. Calculation of φπ
max (xp

k ) using bisectors.

indeed correspond to the maximum distance φπ
max(xp

k ).
This algorithm yields a complexity of O(n3).

V. IMPLEMENTATION DISCUSSION

The task of this work is to track arbitrary, nonconvex
extended objects using level-sets. This raises, however, the
following issues. First, it is difficult to determine how the
tracking algorithm should be initialized. Second, the
probabilistic approach used in RHMs requires the
distribution for the transformation parameter sk to be
known beforehand. Third, when prior information about
the tracked object and the quality of the measurements is
sparse, a regularization approach might be needed in order
to increase robustness. Fourth, the presence of high noise
can cause issues of estimator bias. This section explores
these issues, and finalizes with instructions on how to
develop a Bayesian estimator.

A. Initialization

A suitable initialization for Level-set RHMs might be
difficult when little information is present a priori. For
instance, we may not know the starting position, what the
extent is, and how detailed the model needs to be to
describe the target appropriately. A simple approach
would be to use the first measurements to estimate the
shape using a simple model, which then can be used to
initialize a more complex Level-set RHM. However, the
choice of this first stage model must take into account that

1) measurements are noisy,
2) points might come from inside the object boundary,
3) the object might be moving.

We propose using a circular RHM [30], a simple but
robust estimator that covers these three points. In this
model, the shape parameters are represented in the form of

xc
k =

[
mc

k

rc
k

]
, (23)

where mc
k represents the center, and rc

k the radius of the
estimated circle at timestep k. This representation can be
easily extended to include additional information, such as
a motion model.

Let ξ be a user-defined threshold of timesteps. After
this threshold, the state xc

ξ can be used to initialize the



parameters xp

ξ of a polygonal Level-set RHM in the
following way. The key idea is to approximate the circle
using an n-polygon, which will sample the circle along
user-defined angles θj , j ∈ {0, ..., n − 1}. Then, the
vertices bξ,j for the polygon parameters x

p

ξ can be
calculated as

bξ,j = mc
ξ + rc

ξ ·
[

cos(θj )

sin(θj )

]
(24)

=
[

1 0 cos(θj )
0 1 sin(θj )

]
·
[
mc

k

rc
k

]
.

(24)

It can be seen that this operation is linear in xc
ξ . Therefore,

we can find a matrix Ac to describe this transformation,
allowing for a straightforward calculation of xp

ξ from xc
ξ in

the form of

xp

ξ = Ac · xc
ξ . (25)

However, this approach introduces the following issues.
First, the new state may be too certain. Second, as all
vertices are generated from the same three-dimensional
random vector, it may happen that vertices may be too
correlated with each other. This is unwanted, as we want
the vertices of the polygon to forget about the circle and
incorporate information of the new shape. In order to
address this issue, we increase the uncertainty of the state
by adapting (25) in the following way,

xp

ξ = Ac · xc
ξ + rc, (26)

with rc ∼ N (0; σ 2
c · I) as the transformation process

noise, and where σ 2
c is a user-defined parameter.

The parameters ξ and σ 2
c should be selected based on

the specific target shape and noise level. In [15], the
evaluation saw convergence at ξ ≈ 75 using a single
measurement per timestep. This value is relatively high in
comparison with shape fitting tracking scenarios, and this
is caused by the fact that the considered shapes are filled,
and thus, most measurements stem from inside the shape
and contribute little new information. The variance σ 2

c

should be chosen so that the new state is highly uncertain
relative to incoming measurements. For example, a
proposed value is σ 2

c ≈ 102 · trace(C∗
w), using a

representative measurement noise covariance matrix.

B. Distribution of the Transformation Parameter

The distribution for the transformation parameter sk

from (15), as mentioned in Section III, must be known a
priori. The particular choice varies depending on the
application. A common example is when measurement
sources are generated only from the edges. In these cases,
as a transformation parameter of 0 is equivalent to the
boundary, the only transformation is sk = 0. This is an
instance of shape fitting, similar to the case explored in
Section III-A. In consequence, fitting can be seen as a
special case of Level-set RHMs.

An interesting case that is central to this paper is when
measurements are also generated from the inside of the

Fig. 7. Distribution of transformation parameter.

object. A common example is the case of a flat surface
being observed by a sensor from above or below, such as
Fig. 4. In general, this leads to measurement sources,
represented as z, being uniformly distributed in the shape.
Tight group targets, where a minimum distance between
participants must be held, also come close to a uniform
distribution. However, of interest for the transformation
parameter of Level-set RHMs, as seen in (15), is the
distribution of the measurement sources after being
propagated through the shape function. Thus, it makes
sense to evaluate how the random variable sk, or in
particular φ(xp

k , z), behaves when z is uniformly
distributed. This then can be used as a starting point for
cases when z has other distributions. The remainder of this
section explores these considerations.

First, the distribution of sk with a circle and the signed
Euclidian distance is considered. In [15], it was shown that
if measurement sources are uniformly distributed, and the
scaling parameter sc

k is 0 at the center, it follows that (sc
k)2

is uniformly distributed as well. In this paper, the
transformation parameter is 0 at the boundary, and thus,
(1 − sk)2 is uniform instead. It follows that for circles, the
distribution of sk is

f s
k (sk) =

{
2 − 2sk for sk ∈ [0, 1]

0 otherwise.
(27)

Subsequently, the distribution of other shapes was
analyzed using uniformly random sampling with 106

points from inside the shape, and producing a histogram of
the normalized Euclidian distances. Fig. 7 shows the
results for an ellipse of aspect ratio 2:1, and the shapes
introduced in Fig. 3. The main result is that all
distributions are relatively close to that of a circle. For
elongated shapes, or those made up by compositions of
them, the distributions lean closer to uniform, and then
sharply drop.

When tracking an object, the target shape is not
known, and even if it was known, an exact calculation of
the distribution of sk is generally not efficient. However,
based on Fig. 7, we propose a general approximation
using a uniformly distributed random variable u ∼ U(0, 1)



in the form of

sk = 1 − √
u, (28)

with the probability density from (27). In Fig. 7 this
density appears as a dotted black line. For extremely
elongated shapes, a uniform distribution for sk might be
preferred instead.

C. Regularization

As mentioned in Section V-A, the choice of the shape
model may be an issue. In general, the shape to be tracked
is not known in advance, and as such, it may be difficult to
predict how detailed the representation should be. In
addition, even in cases of low noise, tracking might fail
because of an unsuitable initialization. These factors raise
the need for a correction mechanism, and in this section, a
simple form of regularization is presented.

In order to develop an approach to address these
issues, we followed some ideas of active contour models
[35], which face similar problems. In active contours, the
idea is to minimize what is termed energy. Of particular
interest for regularization is the concept of the internal
energy, which is a mathematical measure of the stretch
and curvature. Informally, the objective of internal energy
minimization is to make the shape boundary smoother and
flatter. As such, the effect of noise and overfitting is
greatly reduced, and the consequences of an improper
initialization can be compensated.

For polygons, internal energy minimization is
implemented as follows. The neighbors of vertex bk,j can
be seen as connected with springs, slightly pulling bk,j

towards bk,j−1 and bk,j+1. In other words, bk,j is being
pulled in the direction of (bk,j−1 − bk,j ) and
(bk,j+1 − bk,j ). This pull is measured using the
regularization factor ck ∈ [0, 1]. Thus, the pull has the
form

bk+1,j = bk,j + ck · (bk,j−1 − bk,j ) + ck · (bk,j+1 − bk,j )
= ck · bk,j−1 + (1 − 2ck) · bk,j + ck · bk,j+1.

(29)
In effect, this ends up making the shape flatter, in the sense
that it becomes closer to a circle. The implementation
shown in (29) has the extremely useful effect that the
evolution is linear in relation to bk,j and its neighbors.
Thus, it can be modeled using a matrix Ar (ck), in the
form

xreg

k = Ar (ck) · xk, (30)

which regularizes the parameters in x
p

k linearly and leaves
the remaining terms intact. An implementation is therefore
straightforward as part of the prediction step described in
Section V-E.

While regularization yields a more robust estimator,
this approach has some drawbacks, which should be
considered when selecting a value for ck. As regularization
pushes the shape towards a more circular form, ck should
be set as low as possible (i.e., very close to zero), or else
the shape details will be lost. It follows that when

Fig. 8. Illustration of source of bias: source cannot be modeled
correctly, and expected distances are not necessarily 0.

regularization is active, the estimator usually does not
fully converge to the true shape. Nonetheless, as the pose
is usually more important than an exact shape estimate,
regularization is still effective even with these tradeoffs. In
order to choose ck, the levels of measurement noise,
process noise, and shape curvature for the tracking
scenario should be considered. For the Z-shape, we
observed that values around ck ≈ 10 · trace(Rk) were good
starting points.

D. Bias in the Measurement Equation

The measurement function (6) is useful because it does
not assume that the source is explicitly known. However,
this simplified model also introduces an issue of bias. The
origin of this problem is twofold. First, the true source is
not known, as shown in Fig. 8(a). Instead, shape functions
usually use a point in S(xp

k ) as reference, for example in
the case of the Mahalanobis distance used in (4). However,
this reference point does not generally correspond to the
true source. Second, even if the true source was known,
(6) associates the boundary shape function to the value of
0. However, as Fig. 8(b) shows, in case of nonzero
curvature or corners, the expected shape distance
generally cannot be 0, as the regions with positive (red
measurements) and negative distances (blue
measurements) are of different sizes.

Reference [27] has proposed an approach to alleviate
this problem given a measurement y

k
. First, a

representative state x
p,∗
k is drawn from xp

k , such as the
mean E[xp

k ]. Second, one single assumed source z∗
k

is
taken as S(xp,∗

k ), for example as the Mahalanobis
projection. For the sake of implementation, the
Mahalanobis projection can be obtained in a similar
fashion as (21) for � = Cw

k , by taking the point zπ
j

with
minimal distance. Third, we model the shape function
values we would expect from this source, in the form of
the random variable

υk := φb(xp,∗
k , z∗

k
+ wk) . (31)

Finally, we associate the shape function value φb(xp

k , y
k
)

to υk in the measurement equation

h(xk, yk
, υk) := φb(xp

k , y
k
) − υk

= 0 ,
(32)



where υk is a noise term drawn from the υk . Note that the
strength of this approach depends on how well z∗

k
and υk

can be approximated, and how close x
p,∗
k is to the true

shape.
Using these, we can interpret the expression in (32) as

the shape function in (15), leading to the bias-alleviated
RHM measurement equation

h(xk, yk
, υk, sk) : = sk · φmax(xp,∗

k ) − (φb(xp

k , y
k
) − υk)

= sk · φmax(xp,∗
k ) − φb(xp

k , y
k
) + υk

= 0. (33)

In situations with high noise, the selection of z∗
k

may
be relatively straightforward for convex shapes. However,
for the nonconvex shapes treated in this work, an
appropriate source selection and its propagation through
(31) can be very challenging in case of high noise. Note
that estimation issues with high noise for nonconvex
shapes are not unique to this work, and appear in a wide
variety of fields such as computer vision [36] and errors in
variables [37, 38]. This places a limit on how well the
proposed polygonal parameterization, or in practice any
detailed parameterization, can work with high noise levels.
In these cases, Level-set RHMs with simpler and more
robust convex shapes can be used as an approximation,
such as ellipses or regular polygons.

E. Prediction Step

As a summary of the section, the following
subsections describe how to develop a Bayesian estimator.
The prediction step is straightforward, applying the
concepts described in Section V-C. Thus, (2) is written as

xk+1 = ak(xk, rk)

= a∗
k (Ar (ck) · xk) + rk ,

(34)

with rk ∼ N (0; Rk) as the additive Gaussian process
noise, Ar(ck) as the regularization matrix from (30), and
a∗

k (·) as the system function that describes the time
evolution. Unless a more detailed model is needed,
a∗

k (·)can be simply assumed to be the identity.

F. Filter Step

In order to estimate a target shape, the hidden state
parameters must be inferred from the observed
measurements. A common approach to achieve this is to
develop a probabilistic model, i.e., a likelihood function
that associates the received measurements to the state
parameters.

Let Yk = {y
k,1

, . . . , y
k,l

} denote the set of received

measurements, and f L
k (xk) the likelihood function, i.e.,

p(Yk|xk). As it is assumed that the measurement noise and
transformation parameters are independent from each
other and the state, the likelihood can be rewritten as the
product

f L
k (xk) =

∏
0≤i≤l

f L
k,i(xk) (35)

of the likelihood functions f L
k,i(xk) of the individual

measurements y
k,i

, i.e.,p(y
k,i

|xk). This allows us to treat
the likelihood of each measurement independently of each
other. The likelihood (35) can be used, for example, in a
Bayesian estimator to update the priorf ρ

k (xk), in the form
of

f e
k (xk) ∝ f L

k (xk) · f
ρ

k (xk), (36)

where f e
k (xk) represents the posterior.

When separated according to (35), it can be seen that
incorporating all measurements simultaneously is
equivalent to incorporating individual measurements
sequentially in arbitrary order. Note that, in practice, this
validity of this statement is determined by how well the
estimator can describe the density f e

k (xk), which is
generally merely an approximation. Thus, in most tracking
scenarios with nonlinear measurements, the order in
which measurements are incorporated will matter when
using individual updates. Fortunately, the results will still
converge to the target shape in the general case. We drop
the index i once more for legibility.

As seen in (15), we do not work directly with the
measurement y

k
, but instead with a pseudomeasurement

based on h(·, ·, ·, ·). Because of this, describing the
likelihood f L

k (xk) requires some consideration. The
following subsections describe how to realize a
measurement update using linear regression Kalman filters
(LRKFs) and using an approximated explicit likelihood.

1) Linear Regression Kalman Filters: The key idea
for LRKFs is to assume that the state is Gaussian
distributed, i.e., f

ρ

k (xk) = N (xk; xρ

k , Cρ

k ), and that the
state and the pseudomeasurement are jointly Gaussian.
From (14), we obtain the propagated random variable

hk := h(xk, yk
, wk, sk), (37)

with mean ĥk, scalar variance Ch
k , and cross-covariance

Cxh
k with the state.

These values can be approximated using sample-based
propagation approaches. An example implementation
follows. Let there be a set of n samples in the form
[ x∗

k,j , w
∗
k,j , s

∗
k,j ] with weights βk,j for 1 ≤ j ≤ n, drawn

from [ xk, wk, sk ]. These can be obtained, for example, by
using the techniques applied in filters like the unscented
Kalman filter (UKF) [39] or the smart sampling Kalman
filter (S2KF) [40]. Then, we define the propagated sample
h∗

k,j as

h∗
k,j := h(x∗

k,j , yk
, w∗

k,j , s
∗
k,j ), (38)

from which we obtain

ĥk =
n∑

j=1

βk,j · h∗
k,j , (39)

Ch
k =

n∑
j=1

βk,j · (h∗
k,j − ĥk)

2
(40)



and

Cxh
k =

n∑
j=1

βk,j · (x∗
k,j − x̂

ρ

k ) · (h∗
k,j − ĥk). (41)

From these, we obtain the Kalman gain

Kk := Cxh
k · (Ch

k )−1, (42)

leading to the updated state f e
k (xk) = N (xk; x̂e

k, Ce
k) with

x̂e
k = x̂

ρ

k + Kk · (ĥk − 0) (43)

and

Ce
k = Cρ

k − Kk · (Cxh
k )T . (44)

These are, in essence, the Kalman formulas, where the
pseudomeasurement in (43) is 0.

It is also possible to process multiple measurements in
batch. In this case, (38) can be extended to contain the
propagated samples of each measurement stacked
vertically as the vector h∗

k,j . The remaining formulas can
be extended analogously. Note that the order of
measurements within a batch update will not change the
result.

2) Approximated Explicit Likelihood: Unlike
LRKFs, estimators such as particle filters [41] or the
progressive Gaussian filter [42] require an explicit
likelihood. Using the bias-alleviated form (33), we can see
that sk and υk appear as additive noise terms. Thus, we
define the random variable

ηk := sk · φmax(xp,∗
k ) + υk, (45)

with probability density function f
η

k (ηk). This leads to the
likelihood

f L
k (xk) = f

η

k (φb(xp

k , y
k
)). (46)

If f
η

k (ηk) is untractable, a good approximation in case
of low shape curvature can be obtained by assuming ηk is
Gaussian distributed, whose mean and variance are
calculated using sample-based approaches as mentioned in
Section V-F.1, also described in [27]. Another approach is
kernel density estimation, but this requires the selection of
an appropriate bandwidth parameter [43]. Multiple
measurements can be processed in batch by multiplying
their likelihoods. For multiple object tracking, a
mechanism for measurement-to-target association can be
derived by using ideas from [44].

VI. EVALUATION

In this section, we evaluate how well polygonal
Level-set RHMs can track arbitrary, nonconvex shapes in
a variety of conditions. First, the capabilities of the models
are evaluated using synthetic data with isotropic noise.
Then, we introduce a real-life application by tracking a
Z-shaped extended object with data captured by an RGBD
sensor.

An important part of the experiments is to measure
how the estimated shape S(xp

k ) converges to the target
shape SG. For this purpose, we introduce the concept of

area error, which shows how mismatched the estimated
shape and the ground truth are. Let the symmetric
difference between both shapes be denoted as

S(xp

k ) � SG := (S(xp

k ) ∪ SG) \ (S(xp

k ) ∩ SG), (47)

i.e., the union of the shapes minus their intersection. In
addition, let ‖S(xp

k )� SG‖ be defined as the area of the
symmetric difference. To normalize it, it is then divided by
the area of the target shape, i.e., ||SG||. The area error ε(k)
is then

ε(k) :=
∥∥S(xp

k ) � SG

∥∥
‖SG‖ . (48)

A. Evaluation with Synthetic Data

This part of the evaluation consists of tracking the
shapes introduced in Fig. 3 using synthetic data. Two
scenarios are explored. In the first scenario, the shape of a
static target is estimated. In the second scenario, the shape
and position of a moving target are tracked. For backward
inference, the sample-based estimator S2KF [40] is used
with a sampling factor of 2 times the number of
dimensions. This estimator is based on the LRKF approach
proposed in Section V-F.1. For the random variable Sk

from (15), the approximation suggested in (28) is used.
For each scenario, in each timestep k, a single

measurement source is generated uniformly from the
target shape SG. This source is then corrupted using
zero-mean, Gaussian-distributed noise with covariance
matrix Cw

k . For the measurement noise Cw
k , the three

following categories of isotropic noise are used:

• low noise of 10–4 · I,
• medium noise of 10–3 · I,
• high noise of 10–2 · I.

In addition, we assume a Gaussian distributed process
noise with zero-mean and covariance matrix Rk at each
timestep.

The xk is assumed to be Gaussian, with mean x̂k and
covariance matrix Cx

k . x0 is initialized in the following
way. For x̂

p

0 , the vertices of the polygon are positioned so
as to approximate a circle of radius 2 m, the particular
configuration depending on polygon size. For clarity, a
polygon of size n is referred as an n-polygon. Other state
parameters, if present, are initialized with 0. The
covariance matrix is initialized as Cx

0 = 10−2 · I.
1) Static Target: The objective is to see how well the

polygonal Level-set RHM can track a static shape. For the
first experiment, a Z-shape is selected as the target shape.
For size reference, the shape completely fits into a square
box of 2 m length. As shown in Fig. 7, the used
distribution of sk does not match the distribution of
distances in the Z-shape. In order to compensate for this, a
weak regularization factor of ck = 10–4 is used. A
Gaussian distributed process noise with zero-mean and
covariance matrix Rk = 10–5 · I is assumed at each
timestep. The target is tracked using a 6-polygon. Fig. 9
shows an example representative run.



Fig. 9. Representative run. Timestep is k, measurements in red, uncertainty ellipse of 1- σ in cyan.

Fig. 10. Area error while tracking static Z-shape, averaged for 20 runs.

Fig. 10 shows the averaged results of the area error for
20 runs. For low (blue) and medium noise (green), the
shape has converged after 1100 measurements, with an
area error of around 0.09 and 0.14, respectively. For high
noise (red), the error remains relatively high between 0.40
and 0.50. After almost 1200 measurements, the error
remains constant, but considerably above 0. This is a
consequence of the fact that, on the one hand, the
distribution of sk is an approximation, while on the other
hand, the regularization procedure will always slightly
pull the shape into a smoother, but incorrect, form. Even
so, the results are extremely close.

One thing that stands out when looking at Fig. 10 is
the high number of measurements required for
convergence. This can be explained with the following
three observations. First, in contrast to traditional shape
fitting approaches, the target is filled, i.e., measurements
also come from the interior. This means that these
measurements contribute little information about the
boundary. Second, the shape is nonconvex, requiring a
larger state parameterization. For simpler shapes such as
ellipses, Level-set RHMs are equivalent to Ellipse RHMs
[31], which also converge with little measurements. Third,
the starting shape is convex, so that the estimator needs
considerable information in order to find the concave
parts. A representative run can be seen in Fig. 9.

The experiments are then repeated using the M-shape
and H-shape, using a 5-polygon and a 14-polygon,
respectively. Note that the H-shape has only 12 vertices,

Fig. 11. Experiment setup and results for representative run. Example
measurements in red, estimated shape in green, trajectory in light blue.

and thus, the shape parameters are overfitted. The results
after 2000 measurements are shown in Fig. 20, Fig. 21,
and Fig. 22. The estimated shapes are in green, the target
shapes in gray, example measurements in red, and in cyan
a circle of radius corresponding to the standard deviation
of the measurement noise. Fig. 20 shows the results using
high noise, Fig. 21 using medium noise, and Fig. 22 using
low noise.

2) Moving Target: The objective is to see how well
the polygonal Level-set RHM can track a moving shape
that is also morphing. The experiment setup is shown in
Fig. 12. It consists of the following parts.

• The shape rotates around a circle of radius 6 m,
clockwise, starting at the positive x-axis.

• Every 1 deg in the trajectory corresponds to 33
timesteps. This means that the shape moves
0.03 deg for each timestep.

• The shape is also morphing. At the start of the
morph is a Z-shape, which then turns into an
ellipse of height 2 m and width 1 m. Fig. 11 shows
the morphing stages, which go on back and forth
every 90 deg in the trajectory, or 3000
measurements. Note that the filter step only
processes a single measurement at each timestep.
This means that the shape is moving between
measurements, and thus, every single measurement
comes from the shape at a different pose.

A moderate regularization factor of ck = 6 · 10–4 is
used. In addition, a Gaussian distributed process noise
with zero-mean and covariance matrix Rk = 3 · 10–4 · I is
assumed at each timestep. A 6-polygon was used to track
the shape. The state parameters are extended with a
constant velocity model, i.e., a new two-dimensional state



Fig. 12. Area error while tracking morphing shape, averaged for 30
runs.

Fig. 13. Morphing stages from Z-shape to ellipse.

parameter xvel
k is appended to the state vector. This yields

a dynamic model, as mentioned in (34), for each polygon
vertex bk,j in the shape parameters x

p

k , described as

a∗
k (bk,j ) = bk,j + xvel

k · �t, (49)

where �t is the time difference. In addition, the morphing
is not considered as part of the dynamic model in order to
explore the capabilities of our regularization approach
from Section V-C.

In Fig. 12, the estimated shapes are in green, the
ground truth in gray, example measurements in red, and
the mean of the estimated polygon points in blue. In Fig.
13, the average area errors for 30 runs in function of the
angle are shown. The morphing stages are evident, as each
transformation into the nonconvex Z-shape leads to a peak
in the area error. The ellipse, being a convex shape, can be
effortlessly described (at 45o, 135o, 225o, and 315o) even
with high noise, while the difficulty to properly describe
the Z-shape (at 90o, 180o, 270o, and 360o) is clear again.
Even then, the results are consistent with Fig. 10 and are
indicative of the estimator adapting appropriately to the
motion and morphing changes, even if the last one was not
modeled explicitly. This can also be seen in the path of the
mean of the polygon points. Even at high noise levels, at

no point did it move farther than 20 cm from the correct
path, and for low noise levels it constantly remained
within 10 cm. For the high noise runs, however, it can be
seen that the errors accumulate in successive cycles,
causing the shape estimation to slowly diverge. Again, we
can see that a relatively high amount of measurement is
needed to estimate the shape. However, we would like to
emphasize that each measurement comes from the shape
at a different pose, This means that polygonal level-sets
can gather a high amount of shape information throughout
time even if each timestep provides few measurements and
the target keeps moving.

B. Evaluation with RGBD Data

This part of the evaluation consists of tracking a
real-life Z-shape extended object, using data captured by a
Microsoft Kinect device. The objective is to show how
well Level-set RHMs work in a real environment. First,
the noise model for these devices is explained. Then, the
difficulties of introduced artifacts and a gating approach
are explored. Finally, in a similar fashion to Section VI-A,
Level-set RHMs are evaluated using a static and a moving
Z-shape object. Note that, while Kinect devices yield
measurements in three dimensions, this section only uses
two-dimensional data.

1) Noise Model: The noise model for Kinect devices
is taken from previous work [12]. For the sake of
completeness, the key points are explained in the
following section. Kinect devices observe measurements
as a depth value at a given pixel position. Let p

k
be a

two-dimensional random vector describing the pixel
position, and dz

k be a random scalar describing the depth
value. It is assumed that both variables are independent of
each other.

The process of turning these values into world
coordinates is called unprojection, and works as follows.
Let the inverse intrinsic calibration parameters of the
Kinect camera be described with the matrix Fk and
translation vector f

k
, in the form of

Fk =
⎛
⎝f0 f1

f2 f3

0 0

⎞
⎠ , and f

k
=

⎡
⎣f4

f5

1

⎤
⎦ . (50)

Then, the observed measurement in world coordinates yW

k
are

yW
k = (Fk · pk + f

k
) · dz

k. (51)

Note that yW

k,i
is three dimensional. Finally, as polygonal

RHMs require the measurement to be two dimensional,
the observed measurement yW

k
is projected onto a plane

using a 2 × 3 projection matrix Pk. Thus, the final form of
measurement y

k
is

y
k

= Pk · yW

k
, (52)

with corresponding mean ŷ
k

and covariance matrix Cy

k .
From these, we derive the parameters for the measurement



Fig. 14. Moving Z-shape as observed by a Kinect. Target shape
boundary in black, measurements in red. Note presence of outliers.

noise wk ∼ N (0, Cy

k ). Note that the noise term wk is, in
general, not isotropic.

2) Gating: The main issue separating the Kinect
evaluation from the synthetic data evaluation is that
observing the tracked object introduces artifacts. In
consequence, on the one hand, some parts of the object are
not observed correctly, while on the other hand, spurious
measurements (outliers) are observed that do not
correspond to any source. This makes it very difficult to
estimate the distribution of measurement sources. In
practice, given the closed nature of the Kinect internals, it
is impossible to correctly model these effects. Fig. 14
visualizes this challenge, with measurements in red and
the ground truth in black.

This issue is particularly troubling when the tracked
object is moving, because of the high amount of outliers.
This raises the need for a gating mechanism. A simple
gating algorithm for Level-set RHMs is introduced as
follows.

At timestep k, a measurement y
k

arrives, modeled as
having been disturbed with additive noise wk . The
measurement and noise are then propagated through the
measurement function (15), or its bias-alleviated form
(33). As described in Section V-F.1, let ĥk be the mean and
Ch

k the scalar variance of this propagated distribution.
Finally, based on the one-dimensional Mahalanobis
distance, we accept the measurement y

k
only if

(Ch
k )−1 · (

ĥk − 0
)2

< d2
G, (53)

where 0 represents the pseudomeasurement, and dG is a
user-defined distance threshold which indicates how close
the measurement has to be to the estimated shape.

A more intuitive approach is to establish which
fraction of potential measurements we want to
incorporate. Thus, let dε

G in [0, 1] be a user-defined gating
threshold. For example, dε

G = 0.99 indicates that we want
to accept 99% of potential measurements. Then, as hk is
assumed as Gaussian distributed, the left side of (53) can
be assumed as chi-squared distributed. This allows us to
determine d2

G by using

d2
G = chi2inv(dε

G, 1), (54)

Fig. 15. Experiment setup for Kinect evaluation.

where chi2inv(·, 1) represents the inverse of the cumulative
chi-squared distribution with 1 degree of freedom.

3) Experiment Setup: The experiment setup (Fig.
15) consists of a toy train moving on a track on the XY
plane. On top of the train, a Z-shaped extended object is
attached, with width and height of 0.15 m. The camera
observes the object at around a distance of 1.2 m. The
objective is to track this Z-shaped object as it moves.

For the sake of reproducibility, the experiment
parameters are as follows. The inverse camera intrinsic
parameters are

Fk = 1.880 · 10−3

⎛
⎝1 0

0 1
0 0

⎞
⎠ , and f

k
=

⎡
⎣−0.601

−0.451
1

⎤
⎦ ,

using a depth image of size 640 × 480 pixels. For the
measurement, both p

k
and dz

k are assumed to be Gaussian

distributed. The corresponding means p̂
k

and d̂z
k are

directly taken from the values measured by the Kinect. For
the pixel position, a covariance matrix of Cp

k = 1
3 · I

pixels2 is assumed. The depth scalar variance Cdz

k depends
on the observed depth [12]. However, in the neighborhood
of 1.2 m, the value for this variance is about 10–5 m2.
Finally, the matrix Pk is simply a projection matrix to the
plane XY. For a reference on the uncertainty of wk , both
eigenvalues of Cy

k are always in the order of magnitude of
10–6 m2.

4) Static Tracking: In this section we evaluate how
well a polygonal Level-set RHM can track a real-life static
shape, given the conditions described in Section VI-B.2.
For the experiment, the camera observes the static
Z-shaped object from above (15a). The first frame is used
for initialization by means of a circle estimator (Section
V-A), with a one-time Gaussian transformation process
noise with Rξ = 10–4 · I m2, and a threshold of ξ = 50
timesteps. Then, independent evaluation runs are
launched, where each run is initialized with the
aforementioned circle, and uses a different frame.

The measurements to be used are taken at random
from this frame, in order to ensure our requirement that sk

is drawn from sk independently between measurements.
Measurements are then processed sequentially using a
single measurement per timestep. Note that the estimator
can also process multiple measurements per timestep if



Fig. 16. Example run. Target shape boundary in black, example
measurements in red, estimate in green. Note presence of outliers.

Fig. 17. Area error for Z-shape Kinect tracking.

desired. A regularization factor of ck = 6 · 10–5 is used. In
addition, a Gaussian distributed process noise with
zero-mean and covariance matrix Rk = 10–7 · I is assumed
at each timestep. As the shape is static, the number of
outliers is small, and therefore the gating approach of
Section VI-B.2 is not used. Fig. 16 shows an example run,
and Fig. 17 shows the average area error for 100 runs
(red).

As can be seen in Fig. 14, there are several
measurements outside of the shape that cannot be
described using the noise model. Because of this, a
convergence to the area errors seen in Fig. 10 is not
possible. The area error for this shape is about 0.35, as
seen in Fig. 17. This is still an extremely close estimate, as
shown in Fig. 16(c), where it can be observed that the
estimated value is simply a slightly scaled version of the
correct Z-shape. This scaling can easily be explained when
considering the reference picture in Fig. 14. It can also be
seen that the estimator has mostly converged at about 1000
measurements. The Z-shaped object, in the depth image,
was observed in a window of about 60 × 60 pixels2,
yielding about 2200 usable measurements. This indicates
that, under the given circumstances, a single frame is more
than enough to allow the estimator to converge.

5) Dynamic Tracking: The final experiment consists
of evaluating how well a polygonal Level-set RHM can
track a moving shape being observed by a Kinect. For this
experiment, the toy train moves along the track at a speed

Fig. 18. Results of shape tracking at 8 snapshots. Measurements in red,
estimated shape in green, trajectory in blue.

Fig. 19. Absolute deviation |Dk | to ground truth path.

of about 40 cm
s . For reference, a Kinect observes the train

in discrete intervals at a rate of 30 frames per second. The
parameters for the evaluation are the same as in Section
VI-B.4, except for the addition of a constant velocity
model. In addition, because of the presence of outliers
caused by the moving object, the gating approach from
Section V–B.2 is used with d2

G = 9.

First, we evaluate how much the measurement quality
has degraded when the object is moving. For this, 40
control frames were processed as described in Section
VI-B.4, i.e., the Z-shape was tracked from scratch starting
with a circle and then the area error to the ground truth
was measured. The results are shown in Fig. 17, in green.
It can be seen that the area error has increased to about
0.50. For reference, the mismatched parts in the estimate
are about 40% larger than those in Fig. 16(c), which
shows that the result of the estimation is still very
close.

Finally, the moving object is tracked by initializing the
estimator using the first frame, and then updating it using
the following ones, using a total of 255 frames. Fig. 18
shows eight snapshots of the tracking experiment. Even if
the area error is higher, the estimator still correctly
identifies the target shape and its pose, though it is a
slightly scaled form. It can also be seen that the constant
velocity model has little trouble following the object, even
considering the increased presence of outliers, and the fact
that some corners cannot be correctly observed.



Fig. 20. Example run for high measurement noise at k = 2000. Target in gray, estimate in green, example measurements in red, uncertainty of 1-σ in
cyan.

Fig. 21. Example run for medium measurement noise at k = 2000. Target in gray, estimate in green, example measurements in red, uncertainty of
1-σ in cyan.

Fig. 22. Example run for low measurement noise at k = 2000. Target in gray, estimate in green, example measurements in red, uncertainty of 1-σ in
cyan.

Fig. 19 shows the path deviation of the estimator, i.e.,
how much the center of the estimated shape deviated from
the ground truth path. The maximum deviation was 14.9
mm, meaning that the deviation error was always under
10% of the width of the object. The deviation mean was
2.3 mm, while the mean of the absolute values of
deviations was 4.8 mm.

VII. CONCLUSION AND FUTURE WORK

In this work, a Bayesian estimation algorithm for
tracking arbitrary shapes was introduced in the form of
Level-set RHMs. This allows the modeling and tracking of
a variety of shapes, including filled shapes that are neither
convex nor star-convex.

The objective was to extend the concept of RHMs in
order to track arbitrary, nonconvex extended objects. The
key idea was to implement shape transformation using
level-sets of a given shape function. This, combined with a
random variable sk describing the probability for each
level-set to generate a measurement, allowed for a simple

measurement equation that is both easy to understand and
to implement.

The implementation consists of describing the tracked
extended object using polygons. This representation has
the advantage of being efficient, simple, and widely used
in research literature. The challenges of tracking arbitrary
extended objects were also explored, together with
approaches and compromises in order to solve them.
These include an approximation for the distribution of
measurement sources, an initialization procedure, and how
to increase robustness by using a regularization approach.

The evaluation showed the viability of Level-set
RHMs both using synthetic data, and data captured from a
real-life object using a Kinect device. The results of the
experiments with synthetic data were twofold. On the one
hand, they displayed the limitations of the approaches and
compromises we presented. On the other hand, they
showed that Level-set RHMs, even with uncertain
information, produce results extremely close to the
expected ground truths. In particular, we demonstrated
how our approach can gather shape information



throughout time, even if each timestep provides very few
measurements and the shape is constantly moving. This
robustness was also shown in the evaluations using Kinect
data, which showed that Level-set RHMs can be used in
real-life scenarios with noisy sensors, and produce close
estimates even in the presence of artifacts and outliers.

Future work includes a further exploration of the
regularization approach, e.g., ways to allow the shape to
recover from an arbitrary initialization, or particularly
damaging outlier measurements. In addition, work on
representations with splines can also be of advantage.
Another important topic is the automatic adjustment of the
shape complexity, for cases of inappropriate initialization,
high measurement noise, or high kinematic noise.
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