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Abstract—Optical bulk material sorting is a key technology
on our way toward a circular economy and efficient recycling.
However, controlling the sorting accuracy has so far been severely
limited, as the achievable accuracy of conventional sorters is
strongly determined by the mass flow and the mixing ratio of
the incoming particle stream. To enable closed-loop control, in
previous work, we introduced a modification to the sorter design
in which controlled fractions of the already sorted mass flows
are returned to the inlet of the sorter. In this article, we now
propose two open-loop and two closed-loop feedback stochastic
model predictive controllers for the control of sorting systems with
recirculation operating under dynamically changing conditions.
In addition, we propose to integrate a desired minimum accuracy
as a chance constraint into our controllers’ stochastic formulation.
Our evaluations using a coupled discrete element–computational
fluid dynamics simulation show that our controllers considerably
improve on the system without recirculation and outperform the
previously known controllers. Furthermore, we found that they
are able to maintain a predefined minimum quality even in highly
dynamic scenarios, making the approach highly valuable for tasks
where achieving a certain quality at any point in time is crucial.

Index Terms—Stochastic optimal control, optical sorting, finite-
horizon, open-loop feedback, closed-loop feedback, global ap-
proaches, trajectory optimization.

I. INTRODUCTION

OPTICAL SORTING combines machine vision and mo-
tion forecasting to physically separate bulk material of

different classes, usually by a binary division into desirable
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Fig. 1. Structure of the sorting system with recirculation and the stochastic
nonlinear model predictive controller (SNMPC) used for closed-loop control.
The sorting system consists of an optical sorter, which separates a particle
stream into two classes, and a recirculation unit (illustrated by the flaps), which
returns controlled fractions of each of the two sorted mass flows to the inlet
of the sorter. As controllers, we consider global and local stochastic model
predictive controllers with either open-loop feedback (OLF) or closed-loop
feedback (CLF). The goal of the controller is to maximize the overall sorting
accuracy, while additional chance constraints specifying a minimum of falsely
sorted particles in either of the two output mass flows can be specified. For our
study, we consider a coupled discrete element–computational fluid dynamics
simulation model of the sorter (as illustrated in the cutout) and the overall
sorting model (as illustrated in Fig. 2).

and undesirable classes. A typical optical sorter consists of a
transport unit, such as a belt or a chute, a camera that analyzes
the particle flow on the transport unit, and a separation unit.
Usually, the latter consists of a bar equipped with compressed
air nozzles, which is mounted behind the transport unit and
ejects particles of undesired classes with bursts of compressed
air (see Fig. 1 and Fig. 2) [1]. Optical sorters are widely applied
in the mineral [2], [3], food [4], and recycling industries [5]. In
particular, the recycling sector is registering a substantial and
growing demand. This is mainly due to global waste pollution
being considered as one of the most pressing problems of
our time. It is indeed expected that the demand will increase
in the future due to new environmental legislation, such as
the European Union’s recycling directive that stipulates that
recycling rates of 70% for packaging waste by 2030 and
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Fig. 2. DEM–CFD model used for our simulations of the sorting system with
controlled material recirculation. The input mass flow is fed onto the feeding
chute (1) and then transported by the lower of the two conveyor belts (2)
to the nozzles (3). Here, particles of undesired classes are ejected into the
reject hopper (4) by bursts of compressed air, while particles not ejected fall
into the accept hopper (5). The material recirculation is modeled by a second
conveyor belt (6) that introduces a time delay. For this, a controlled fraction
of the sorted particles are moved instantaneously from the hoppers (4), (5) to
the belt (6), which returns them to the chute (1).

65% for municipal waste by 2035 are to be achieved [6]. To
this end, optical sorting is viewed as a key technology in the
development of a sustainable circular economy [5], [6].

A key challenge in optical sorting is achieving a desired
sorting accuracy while still maintaining a generally high
throughput rate. The sorting accuracy can be measured in
terms of the true negative rate TNR = TN/(FP + TN) and
the true positive rate TPR = TP/(TP+FN), where we refer
to positive particles as those that should not or are not ejected,
and TP,TN,FP, and FN denote true positives, true negatives,
false positives, and false negatives particles after sorting (note
that we consider binary sorting tasks throughout this article). A
high TNR is typically requested when removing contaminants
is crucial, such as in food processing, while achieving a high
TPR is of importance when positive particles are of high
value, e.g., in diamond sorting [3]. Besides sufficiently accurate
image processing, successful separation depends on the spatial
and temporal distances between the particles at the separation
unit. Thus, TNR and TPR are mainly affected by the type
of particles, the mass flow processed, and the mixing ratio
between the classes [7]. Apart from that, a higher TNR can be
achieved by trading it for a lower TPR and vice versa, which
is accomplished by manually altering system parameters, such
as the deflection pattern, before the actual sorting process [8].
Besides being costly and not guaranteeing the desired accuracy
during deployment, the impact of manual adjustments is limited.
When a desired accuracy cannot be achieved, one is therefore
usually forced to reduce mass flow or use several stages of
sorting, e.g., by cascading sorters [3].

A second challenge arises in dynamic scenarios since
changes in mass flow and material composition automatically
affect TNR and TPR. Therefore, consistent quality over time
cannot be ensured. In particular, this is a severe problem when

sorters are integrated into continuous bulk material processing
plants rather than operate in batch mode, i.e., when the sorted
mass flows are immediately processed further instead of first
being collected in separate bins before being fed to the next
processing step. In situations where certain minimum sorting
accuracies are required, manual re-sorting of already sorted
material is usually the only option remaining.

In our previous work [9], we proposed to meet the first
key challenge using a closed-loop control approach. For this,
a controlled fraction of both the accepted and rejected mass
flow is recirculated to the inlet of the sorter. For control-
ling the recycled fractions, a deterministic model predictive
controller (MPC) is employed that is fed with measurements
providing information about the compositions of the mass flow
at the transport unit and after the separation. The goal of the
MPC is to increase a weighted sum of TNR and TPR over a
finite control horizon. Results of our approach show that we
were able to improve either TNR or TPR of the closed-loop
system, depending on which fraction one desires to improve.

In this article, we extend the aforementioned approach (see
Fig. 1 for an illustration) to also address the problems arising
from the second key challenge. For this purpose, we propose a
stochastic model of the sorting system, in combination with a
stochastic nonlinear model predictive controller (SNMPC) for
closed-loop control of the sorting system. The use of stochastic
modeling and stochastic optimal control (SOC) instead of a
deterministic controller offers two major benefits:

• stochastic nature of the sorting system captured: an optical
sorter is a highly complex system. Capturing all influences
on particles requires a highly complex and computationally
demanding model that is unsuitable for an MPC. A simple,
but uncertainty-aware model accounts for the incomplete
information, disturbances, and model and discretization
errors that are naturally introduced in any kind of model.
It thus prevents control decisions based on overconfident
predictions while still being deployable in an MPC.

• possibility to specify chance constraints for a minimum
TNR or TPR: Using a stochastic model and controller
naturally allows specifying chance constraints for a
minimum TNR or TPR that should be respected with a
desired level of confidence. Note that similar specifications
cannot be incorporated into a purely deterministic, but
erroneous model.

We evaluate the controllers in static and dynamically
changing scenarios by means of an extensive simulation
study, including scenarios with changing mass flow as well as
fluctuating mixing ratios. For this, we build a coupled discrete
element–computational fluid dynamics (DEM–CFD) simulation
model of a sorting system with recirculation (see Fig. 2) and
compare the results to a DEM–CFD model of an optical sorter
without recirculation.

Contributions: First, we develop a stochastic model of the
sorting system with recirculation and propose four variants of
an SNPMC for closed-loop control. In this regard, we propose a
novel, fitness proportional discretization method for the control
inputs of global SNMPCs. Second, we demonstrate superior
sorting accuracies on static and dynamically changing scenarios
compared with both the sorter without recirculation and the
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previously known deterministic MPC through an extensive
DEM–CFD simulation study. Third, we show how a minimum
TNR or TPR that the sorting system should exceed at any
time can be incorporated into the SNMPCs as a chance
constraint. Finally, we experimentally demonstrate that this
lower bound is respected with the desired confidence even in
highly dynamically changing scenarios.

Notation: Throughout this article, vectors will be indicated
by underlined letters, e.g., x, boldface letters, such as x, will
represent random variables, and boldface capital letters, e.g.,
A, will indicate matrices. As a shorthand notation, we write
x ∈ A if we mean that the set A is the sample space of x. To
label a measurement, i.e., a realization, of a random variable x,
we write x̂. The diag{x} operator denotes a square diagonal
matrix with the elements of the vector x on the main diagonal
and all other elements equal to zero. To denote a sequence
over n time steps starting at time step k, we will use the index
k, 0:n. For instance, xk,0:n denotes the sequence xk, . . . , xk+n.
Similarly, the index k, n refers to time step k + n.

Article Overview: The remainder of the article is organized
as follows. In Sec. II, we state the general problem of optical
sorting with material recirculation and introduce the generic
SOC framework, into which we will transfer the sorting
problem in the subsequent sections. We then explicitly describe
the challenges in solving the problem in Sec. III. To keep our
previous work [9] separate from the contributions first published
in this article, in Sec. IV, we first summarize the related work
regarding both SOC and optical sorting, including the previous
work on controlled material recirculation. In Sec. V, we then
address the probabilistic modeling and identification of the
sorting system, which is original to this work. Afterward, we
introduce our SNMPC approaches in Sec. VI. Finally, we
present and discuss our results in Sec. VII and Sec. VIII, and
conclude in Sec. IX.

II. PROBLEM STATEMENT

A. Generic SOC Problem

We formulate the control task as a discrete-time, finite-
horizon SOC problem with imperfect state feedback. We con-
sider the general nonlinear stochastic system and measurement
equations

xk+1 = ak(xk, uk,wk) , (1)
zk = hk(xk,vk) , (2)

where xk ∈ Rnx and zk ∈ Rnz are random vectors
denoting the system’s state and measurements, respectively,
at time step k, uk ∈ A is the control input, or action, and
wk ∈ Rnw ∼ f

w
k (wk) and vk ∈ Rnz ∼ f

v
k (vk) are random

disturbances. The state xk is not directly accessible, i.e., we can
only gain information about the system state via measurements
ẑk of zk, and by assuming that the initial state is distributed
according to x0 ∼ f

x
0 . Decision problems involving systems

described by (1) and (2) are often referred to as partially
observable Markov decision process (POMDP), in contrast to
a Markov decision process (MDP), i.e., decision problems
in which the state is fully observable, and therefore, no
measurement equation needs to be considered.

Let us introduce the information set Ik defined as Ik ={
f
x
0 , ẑ0:k, u0:k−1

}
for k > 0, and I0 =

{
f
x
0 , ẑ0

}
. The goal

of SOC is to find a sequence of control laws, or policies,
µCLF
k,0:N−1

, with µCLF
k,n

(Ik,n) ∈ A, that map Ik,n to actions
uk,n = µCLF

k,n
(Ik,n) so that the closed-loop feedback (CLF)

objective function

JCLF
k = E

{
gN (xk,N )

+

N−1∑
n=0

gn

(
xk,n, µ

CLF
k,n

(Ik,n)
)∣∣∣∣Ik} (3)

subject to (1) and (2) is minimized. Here, N ∈ N denotes
the finite control horizon, gn : Rnx × A → R denotes
the one-step objective function as a function of a state–
action pair, and gN : Rnx → R is the terminal objective
function. Alternatively, we seek a sequence of open-loop
feedback (OLF) policies µOLF

k,0:N−1
, with µOLF

k,n

(
Ĩk,n

)
∈ A,

where Ĩk,n =
{
f
x
0 , u0:k+n−1

}
for n > 0 and Ĩk,0 = Ik, such

that the OLF objective

JOLF
k = E

{
gN (xk,N )

+

N−1∑
n=0

gn

(
xk,n, µ

OLF
k,n

(
Ĩk,n

))∣∣∣∣Ik} (4)

subject to (1) and (2) is minimized. In MPC, also called
receding horizon control, the optimal control found for the
current time step u∗

k,0 is then applied to the system, and the
procedure is repeated in the next time step k + 1. Note that
controllers minimizing JCLF

k are called CLF SNMPCs since
they take into account that future control decisions uk,n, n > 0
will affect the future measurements zk,n+1, . . . ,zk,N and
therefore the information Ik,n+1, . . . , Ik,N available in the
following time steps [10]. In contrast, OLF neglects the
dependency of future measurements on the control decisions
and only considers the measurement information available until
time k [10], [11]. Thus, it is sufficient to predict the future
system states using the system equation (1), effectively treating
the POMDP as an MDP within the control horizon. While OLF
achieves a significant simplification to the control problem, the
imposed assumption leads to conservative approximations since
the uncertainties in a pure prediction approach are commonly
higher than in a combined prediction–estimation setting [12].

B. Sorting with Recirculation

We now describe some general properties and boundary
conditions that hold for our sorting problem with recirculation.
The inputs uk control the proportion of the sorted mass flows
of each fraction to be returned. Thus, A = [0, 1]2 is two-
dimensional and bounded. We want the controller to either a)
increase the system’s TNR and/or TPR in a desired way (the
definition of what is desired is problem-specific) or b) exceed
a desired minimum TNR or TPR in addition to a). Note that
the TNR and TPR here refer to the accuracies measured at the
sorting system’s outlet, not at the sorter’s outlet. A particularity
of the system is that the system noise wk is composed of two
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classes dk and w
x
k : systematic disturbances that are imposed

by the system’s environment dk, and noise effects that occur
due to the randomness in the system w

x
k . Whereas the latter

is assumed to follow a discrete-time white noise process, the
former models the expected mass flow of the input particle
stream to the sorting system and is considered a second, non-
controllable but known input. If dk is not known, we may
assume that we can measure dk with a negative time delay, i.e.,
that we can measure the future input particle stream to a certain
extent. This assumption may easily be satisfied by measurement
devices placed at some distance in front of the sorting system’s
inlet. Note that it is the controller’s goal to optimize the cost
function given a particular sequence dk,0:M . Therefore, using
a finite-horizon cost function with a control horizon similar
to the sequence length M is more natural than a formulation
of the SOC problem as an infinite-horizon N → ∞ problem,
which would require additional assumptions on dk,0:N . The
measurements consist of noisy observations of the sorted mass
flows after the separation unit in the form of camera images.
The measurement noise vk is assumed to follow a white noise
process that is mutually independent and independent of the
system noise. The problem then decomposes into modeling the
functions ak, hk, gn, gN , and all quantities involved as well
as solving the resulting finite-horizon decision problem.

III. CHALLENGES

A. Challenges in Modeling

A suitable model should allow for sufficiently fast com-
putations to frequently process new measurements (usually
arriving at a rate of a few ms) and to determine new control
sequences within a time range of at most a few seconds. On
the other hand, the model should be sufficiently accurate to
capture all prevailing effects. Since we are faced with various
complex technical components, our solution needs to handle
the nonlinearities, time delays, and uncertainties arising from
model abstraction and additional random perturbations. For
example, whether a particle is ejected or not depends on factors
including particle class, proximity to neighboring particles,
and the quality of the data processing. Likewise, the recycled
fraction will not have exactly the expected composition as
not all intended particles may be returned, and some particles
may be returned faster than others. In addition, the model’s
functional form should preferably be general enough to apply
to a wide class of sorting systems, covering different choices
for a transport unit, the optical sensor, or the recirculation.

B. Challenges in Stochastic Optimal Control

The standard approach for solving optimization problems
with cumulative cost functions, such as JCLF

k and JOLF
k , is

dynamic programming (DP) (see [11]). DP solves the opti-
mization problem recursively by applying Bellman’s principle
of optimality. This yields nested optimization problems and

can be solved backward in time. The DP algorithm for the
aforementioned CLF optimization problem is

Jk,n(Ik,n) = min
uk,n

[
E

xk,n,wk,n,zk,n+1

{
gn

(
xk,n, uk,n

)
+ Jk,n+1(Ik,n+1)

∣∣∣Ik,n, uk,n

}]
, 0 ≤ n < N − 1 ,

(5)

Jk,N−1(Ik,N−1) = min
uk,N−1

[
E

xk,N−1,wk,N−1

{
gN

(
xk,N

)
+ gN−1

(
xk,N−1, uk,N−1

)∣∣∣Ik,N−1, uk,N−1

}]
,

(6)

where Jk,n(Ik,n) is called the cost-to-go or value of Ik,n
and Jk,n is referred to as the value function at stage n. If
the OLF formulation is used, Ik,n is replaced with Ĩk,n
and the expectation w.r.t. zk,n+1 in (5) vanishes accordingly.
However, the DP algorithm described above introduces two
major challenges: the challenge of state estimation and the
support for continuous action spaces.

Since the dimension of Ik increases with k, one is usually
searching for a sufficient statistic with a constant dimension.
Since (1) and (2) describe a Markov system, it can be
shown that the conditional state distribution f

xk|Ik

k (xe
k) of

the estimated state xe
k = xk|Ik is a sufficient statistic for

Ik [11]. We thus require an estimator for xe
k, which is typically

realized as a recursive Bayesian state estimator. (Note that OLF
control also requires a state estimator at stage n = 0.) This is
a particular challenge for nonlinear systems or measurement
equations since closed-form formulations are not available and
one has to resort to approximations.

Solving the DP equations requires considering the objec-
tive function values Jk,n for all possible state–action pairs.
Unfortunately, this is only computationally feasible in a few
special cases, such as for control of systems with a finite set of
states that need to be considered within the control horizon. The
latter requires that the space of possible inputs A and—for CLF
problems, also the space of measurements—is finite [13]. For
continuous state and action spaces, the DP algorithm involves
evaluating an infinite set of states during optimization. However,
except for some rare special cases for which analytic solutions
are known, such as linear-quadratic Gaussian (LQG) control,
the optimal solution is computationally intractable [11]. Thus,
we require a suitable approximation method to address our
continuous state and action space problem.

IV. RELATED WORK

A. State of the Art in Stochastic Model Predictive Control

Here, we recap relevant literature in the field of SNMPC
with a focus on finite-horizon, continuous state and action
space SOC problems as encountered in our problem setting.
Roughly, the methods of this class can be divided into global
and local. Global approaches typically try to reconstruct the
value functions along a subset or the entire continuous state
space, either by analytical methods or by fitting regression
or interpolation architectures to state–value pairs provided by
some method (subsumed under the term approximate dynamic
programming (ADP)). Local trajectory optimization (TO)
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approaches on the contrary perform an optimization along
a single state–action reference trajectory starting at the current
information set Ik.

1) Global Approaches: For finite horizon problems with
continuous actions, a natural approach is to discretize the action
space and consider only a finite set of actions A′. These actions
are then used to build a tree structure that is evaluated backward
in time using standard DP. The discretization approach is
guaranteed to converge to the true DP solution under weak
conditions if the discretization grid becomes finer and finer [14].
It was pursued by [15] in the context of OLF control and
later extended to CLF policies and continuous measurement
spaces by [12]. To incorporate measurement information into
the tree, the latter considers a finite set of future virtual
measurements, drawn from f

(
y
k+1

|Ik, uk

)
. This can be

viewed as Monte Carlo integration and renders the problem
feasible at the cost of approximating exact CLF control. Since
the computational complexity depends strongly on the number
of virtual measurements, only a small number or a single
sample, e.g., the expected measurement E{hk(xk,vk)}, is
used. An adaptive discretization scheme is proposed by a
special variant of the Perseus algorithm [16], a point-based
value iteration (PBVI) [17] method originally developed for
continuous action, finite state space POMDPs in the infinite
horizon setting. The set A′ =

{
AU ,AN

b ,Aold
b

}
is rebuild at

each time step and composed of subsets of randomly chosen
(AU ), previously applied (Aold

b ), and augmented versions of the
best previously applied actions (AN

b ). More precisely, AU is a
finite set of uniform samples from A, Aold

b is composed of the
previously applied actions with the smallest values, and AN

b

contains samples from a normal distribution with covariance
CA that is centered at the current best-known action.

There are only a few finite-horizon ADP approaches, presum-
ably because one is generally forced to find approximations of
the value function for all time steps n = 1, . . . , N − 1, known
as sequential backward approximation [18]. This is in contrast
to infinite horizon problems, where one typically can work
with stationary value functions. Formally, one can prove that
sequential backward approximation closely approximates the
optimal cost-to-go and policy if one is able to fit an architecture
in each stage with sufficient accuracy [18]. For example, [19]
used sequential backward approximation based on Gaussian
processes defined over probability distributions for a continuous
state and observation POMDP with a finite action space.

2) Local Approaches: Two popular classes of TO approaches
based on DP are differential dynamic programming (DDP) [20]
and iterative LQG (iLQG) [21]. Both start with a given
nominal state–action trajectory and then expand the model
and the cost function in a Taylor series at the reference
trajectory. While DDP uses a second-order Taylor series, iLQG
linearizes the model and quadratizes the cost function. The DP
algorithm is then solved backward on the simplified system,
the calculated inputs are used to generate a new state–action
reference trajectory, and the process is iteratively repeated until
convergence. Notably, DDP exhibits second-order convergence
to a local optimum [22], whereas iLQG has the convergence
properties of the Levenberg–Marquardt algorithm [21]. Both
DDP and iLQG have been successfully applied to OLF and

CLF control, see, e.g., [22], [23].
A TO method avoiding iterative linearization of the system

involves homotopy continuation, as proposed by [24]. The
method transfers a linearization of the system back to the
original system by a continuous transformation, represented
mathematically as a homotopy. The homotopy allows following
the LQG solution for the simplified system to a solution of the
original system by tracking the minimum as the system model
is gradually transferred back to its original nonlinear version.

Another class of TO algorithms directly aims to minimize the
original cumulative cost function JCLF

k or JOLF
k considering the

system and measurement equation as constraints, using methods
for constrained nonlinear optimization, such as sequential
quadratic programming (SQP), the augmented Lagrangian
method, or interior-point methods (see, e.g., [25]–[27]). The
SQP approach exhibits the characteristics of a Newton-type
method, and converges to a local solution of the SOC problems,
as demonstrated in [25].

Recently, another class of TO algorithm for MDP control,
subsumed under the term approximate input inference has
gained renewed interest (its origins date back to the time
of Kalman, see [28]). They view the finite-horizon SOC
problem as the task of inferring inputs for a latent state
sequence of length N , given the desired outcomes. A state-
of-the-art representative is the input inference for control
(I2C) algorithm [29], which employs expectation maximization
(EM) to find the unknown controls. Therefore, if designed
appropriately, convergence to a zero-gradient point of the
underlying likelihood function is guaranteed, with the rate of
convergence being determined by the EM algorithm employed.
I2C was extended in [30] to learn the parameters of a
parameterized control law given as a linear combination of
state-dependent basis functions.

For the special class of MDPs where the control inputs
act in the same domain as the system noise, such as control-
affine systems, and particular choices of the step costs (e.g.,
zero or quadratic control cost), a path integral formulation
can be found for the cost-to-go. Approaches belonging to this
class are referred to as path integral (PI) control [31]. In PI
control, the expectation over the state space is replaced by an
expectation over future trajectories of the uncontrolled system
and evaluated by sampling. A version for continuous state–
action nonlinear stochastic MDP was developed by [32] under
the name information theoretic MPC. Recent applications of
this version include, e.g., [33].

B. State of the Art in Optical Sorting

A current major trend in optical sorting is to allow for
sorting increasingly smaller particles [34]. Today, particles
of sizes around 100 nm can be detected and sorted, e.g., in
gold [35] and aerosol sorting [36]. As data acquisition and
processing capacities have vastly increased, recent develop-
ments move toward data analysis [37] and machine learning
for system improvement, in particular for particle detection [38].
Improvements in sorting accuracies based on precise forecasting
of particle motion and subsequent nozzle activation can be
achieved by tracking the particles on the transport unit using a
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multitarget tracking approach, as proposed by [8], [39]. Here,
the gained motion information is used to precisely predict
the particles’ arrival time and location at the separation unit.
This approach can be extended to incorporate particle-specific
nozzle activations that account for the uncertainties in the
prediction of the particles’ arrival time, as recently suggested
by [40]. In [41], we proposed to combine learned neural
network models with the previously used first-principle models
to describe the particle motion using a mixture-of-experts
approach and showed that thereby, very precise as well as
robust prediction can be achieved. Recently, we proposed an
image forecasting approach using a convolutional long short-
term memory-based neural network and applied it to the task
of nozzle activation prediction [42]. As this approach can
be trained in an unsupervised fashion, it allows sorting with
a minimum of manual setup and supervision. An extensive
numerical and experimental investigation of the application of
neural networks in a sorting task can be found in [43]. On
the experimental side, e.g., [2], [7] investigated the influence
of mass flow or occupation density and mixing ratio on the
sorting accuracies.

C. DEM–CFD Models for Optical Sorting

DEM–CFD was used to simulate optical sorters in [44]–[47]
and showed good alignment with real experiments (see, e.g.,
[45], [47]). The goal of DEM–CFD simulations is to improve
the design of optical sorters by numerical simulations as well
as to quickly test algorithms for optical sorting (see, e.g., [46]
for a numerical optimization method for the sorter design and
the nozzle activation pattern). DEM–CFD resolves contacts of
particles with other particles, other components of the sorter,
and the fluid field surrounding the particles during ejection
in detail and high temporal resolution. The DEM is able to
handle systems with large numbers of particles and is thus
especially suitable for modeling optical sorters. The discrete
element method relies on the fundamental laws of classical
mechanics, i.e., Newton’s law of motion and Euler’s equation
to determine the motion of particles, the applied forces, and
torques. Concurrently, in computational fluid dynamics, the
Navier–Stokes equations are solved numerically to account
for fluid forces imposed by relative velocities between the
surrounding air and the particles. Here, drag models are
commonly used to estimate the fluid forces on the particles.

D. Optical Sorters with Closed-Loop Control of Material
Recirculation

In [9], we proposed a closed-loop control approach for TNR
and TPR by adding a material recirculation to the optical sorter
that allows recirculating specified fractions of the sorted mass
flows to the inlet of the sorter. Moreover, we employed a
deterministic MPC for closed-loop control. In the following
paragraphs, we briefly describe the approach used in [9]. All
considered quantities are at the level of mass flows rather
than at the level of individual particles (unlike DEM–CFD, for
example).

1) Modeling: Let us denote the input mass flow at the
discrete time step k by dk ∈ R2

≥0 and the mass flow on the
transport unit (in the center of the camera field of view) by q

k
∈

R2
≥0 (see Fig. 3). Furthermore, let y

k
, tk, sk ∈ R4

≥0 be the mass
flow after the separation unit, the returned partial mass flow to
the inlet of the sorter, and the output mass flow of the sorting
system with recirculation, respectively. The vectors describing
mass flows before the sorting, dk, qk, consist of the mass flow
of the accept and the reject particles (indicated by upper indices
P and N), i.e., q

k
=

[
qPk qNk

]⊤
and dk =

[
dPk dNk

]⊤
. The

quantities concerning mass flows after the sorting y
k
, tk, sk,

on the other hand, can be subdivided into the mass flows of
TPs, FPs, FNs, and TNs, i.e., y

k
=

[
yTP
k yFPk yFNk yTN

k

]⊤
and analogously for tk, sk. The control inputs are given by
the vector uk =

[
uP
k uN

k

]⊤
∈ [0, 1]2, where uP

k denotes the
fraction of particles to be returned of the accept mass flow and
uN
k the fraction of particles to be returned of the reject mass

flow. We define q
k

as the state of the system. We derive the
system model by the principle of conservation of mass and by
modeling the separation unit as a nonlinear function.

With the previous definitions, the mass flow on the belt is

q
k+kA

= Ntk + dk+kTR
,

N =

[
1 0 1 0
0 1 0 1

]
,

(7)

with the time delay kA = kTR+kRQ, kTR being the estimated
travel time from the recirculation unit to the mixing point with
the input mass flow dk (which is assumed to be known exactly),
and kRQ being the estimated travel time from this point to the
center of the camera field of view.

Under the assumption that yTP and yFP are equally affected
by uP

k and, analogously, that uN
k affects yFN and yTN equally,

the returned partial mass flow tk is given by

tk = U(uk)yk−kYT
,

U(uk) = diag
{
M⊤uk

}
, M =

[
1 1 0 0
0 0 1 1

]
,

(8)

with kYT describing the estimated time it takes for a particle
to move from the separation unit to the recirculation unit.

For modeling the separation, we assume that the separation
unit itself is a static system, i.e., its behavior only depends
on the current and not on previous q. The mass flow after the
separation unit is then modeled by a static function R2

≥0 →
R4

≥0 mapping q to y according to

y
k+kQY

= Γ(q
k
)q

k
,

Γ(q
k
) =


ϵ(q

k
) 0

0 1− ζ(q
k
)

1− ϵ(q
k
) 0

0 ζ(q
k
)

 ,
(9)

with kQY being the estimated travel time from the center of the
camera field of view to the separation unit. Here, the potentially
nonlinear functions ϵ : R2

≥0 → (0, 1) and ζ : R2
≥0 → (0, 1) can

be understood as the TPR and the TNR of the separation unit,
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respectively. In [9], we modeled ϵ(q
k
) and ζ(q

k
) by quadratic

polynomials

ϵ(q
k
) = α00 + α10q

P
k + α01q

N
k + α20(q

P
k )

2

+ α11q
P
k q

N
k + α02(q

N
k )

2 ,

ζ(q
k
) = β00 + β10q

P
k + β01q

N
k + β20(q

P
k )

2

+ β11q
P
k q

N
k + β02(q

N
k )

2 ,

(10)

whose parameters were identified with the help of preceding
DEM–CFD simulations for the material under consideration.

Finally, the output mass flow of the sorting system with
recirculation is given by

sk = y
k−kYT

− tk . (11)

In summary, the previous steps yield the system and output
equation

q
k+kA

= NU(uk)Γ
(
q
k−kB

)
q
k−kB

+ dk+kTR
, (12)

sk = (I−U(uk))Γ
(
q
k−kB

)
q
k−kB

, (13)

where kB = kQS+kSY+kYT. In addition to the measurements
of the sorted mass flows after the separation unit ŷ

k
, the

controller uses measurements of the mass flow on the transport
unit (these are captured by the optical sorter), resulting in the
measurement equations

z1k = q
k
, (14)

z2k = Γ
(
q
k−kQY

)
q
k−kQY

. (15)

Note that the system, output, and measurement equations are
not in standard form (cf. (1) and (2)). To obtain it, one can
use state augmentation, as described in [11].

2) System Analysis and Control: In [9], we analyzed the
steady-state behavior of the system. We showed analytically
(under some simplifying assumptions) and numerically that
using material recirculation, it is almost always possible to
improve either TNR or TPR of the system compared with
a sorter without recirculation. However, increasing the TNR
generally comes with the cost of decreasing the TPR and vice
versa. Still, as increase and decrease have different magnitudes,
it is possible to achieve a better result in total as measured by,
e.g., a weighted sum of TNR and TPR.

In [9], a deterministic MPC based on the derived model is
applied to the problem of closed-loop control and tested with
the help of a DEM–CFD model of the sorting system with
recirculation. Here, the goal of the MPC was to improve a
combined objective function Jk = c(s)J

(s)
k + c(w)J

(q)

k with
weights c(s), c(q) that consists of a part J (s)

k being a weighted
sum of TNR and TPR in the system’s output mass flow s and
a part J

(q)

k being a weighted sum of TNR and TPR in the mass
flow after the separation unit q. The results show improvements
in the desired quantity (either TNR or TPR) of approximately 1
percent point (p.p.) compared with a sorter without recirculation.
This can be considered a significant improvement, as the
sorting results of the sorter without recirculation were already
exceeding 95%.

V. STOCHASTIC MODELING AND IDENTIFICATION

Due to the stochastic nature of optical sorters and particle
motion as well as simplifications in modeling, the deterministic
model described in Sec. IV-D deviates from the behavior of a
real sorter for various reasons. For example, local clusters
of particles lead to different sorting results for the same
mass flows, and fluctuations in the sorted mass flows result
in different recirculated fractions than intended. Furthermore,
discretization, model identification, and measurement errors
occur. To account for these deviations, we build a stochastic
system and measurement model for our sorting system with
recirculation, which we describe in the following paragraphs.

A. Key Ideas

For the probabilistic modeling of the sorting system, we
extend our previous model from [9], which has been shown to
strike an appropriate balance between computational require-
ments and predictive capabilities. While there are much more
sophisticated modeling principles, such as the ones used in
DEM–CFD, a lightweight model can run at a higher frequency
and process measurement data more often, which in turn
may lead to better control results. Specifically, we model
the quantities q,y, t, s, and the measurements z as normally
distributed random variables and assume that the noise effects
are additive, zero-mean, and independently and identically
distributed across all time steps. In addition, we assume that the
mass flows of accepted and rejected particles are uncorrelated.

To identify the model parameters, we again conduct several
experiments using a DEM–CFD model of the sorter without
recirculation, providing us with mass flow-sorting accuracy
pairs. We then apply constrained least-squares regression to fit
our model to the collected data.

B. Modeling

We begin with the input mass flow, which is now given
by rk = dk +w

r
k with the noise term w

r
k ∈ R2 taking into

account fluctuations in the input mass flow. The formula for
the sorted mass flow y changes from (9) to

y
k+kQY

= Γ(q
k
)q

k
+w

y

k , (16)

incorporating the noise term w
y

k ∈ R4 that accounts for the
uncertainties in the separation unit. To model the uncertainty
in the recirculated mass flow, the additive noise term w

t
k ∈ R2

is added to (7). Hence, the new mass flow on the belt is

q
k+kA

= Ntk +w
t
k + rk+kTR

,

w
t
k ∼ N

(
w

t
k; 0,C

t
w(uk)

)
,

(17)

where we additionally assume that the covariance matrix

Ct
w(uk) =

[
σ2
tP(u

P
k ) 0

0 σ2
tN(u

N
k )

]
(18)

of the returned mass flow depends on the applied actions uk.
We approximate σ2

tP(u
P
k ), σ

2
tN(u

N
k ) using cubic functions of uk

(which are known with certainty). This way, it can be taken into
account that, for example, if uk = 0, i.e., when no material
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k A
RQ k B

QS

TU: Sorter

Γ(q)q

Separation unit
k B
SY k B

YT RU

TU: accept particles

k B
SY k B

YT RU

TU: reject particles

k A
TR

k A
TR

[
yFN yTN

]⊤

[
yTP yFP

]⊤

[
qP qN

]⊤

[
dP

dN

]
wr

wt wy

[
sTP

sFP

]

[
sFN

sTN

]

[
tTP tFP

]⊤

[
tFN tTN

]⊤

Fig. 3. General structure of our probabilistic model for a sorting system with recirculation subject to system noise. Discrete-time delays are indicated
by ka, a ∈ {RQ,QS, SY,YT,TR}. Time delays with an upper index A or B are part of the cumulative delays kA or kB. RU stands for the nonlinear
recirculation unit described by (8). TU stands for the transport unit. The measurement vectors are highlighted in blue. Time indices are omitted for simplicity.

TABLE I
PARAMETERS OF ϵ AND ζ FROM (10) IDENTIFIED BY THE CONSTRAINED LEAST SQUARES ACTIVE SET METHOD

Parameter (·)00 (·)10 (·)01 (·)20 (·)11 (·)02
α 9.9245 ·10−1 −1.3064 ·10−4 s g−1 4.2201 ·10−5 s g−1 2.9146 ·10−7 s2 g−2 −5.1492 ·10−6 s2 g−2 −5.8975 ·10−8 s2 g−2

β 9.8788 ·10−1 8.2687 ·10−6 s g−1 −1.9234 ·10−5 s g−1 3.1924 ·10−8 s2 g−2 −5.4149 ·10−6 s2 g−2 8.6928 ·10−8 s2 g−2

is returned, the recirculation does not introduce additional
uncertainty. In summary, the stochastic system shown in Fig. 3,
taking into account noise effects, is described by

q
k+kA

= N
(
U(uk)

(
Γ
(
q
k−kB

)
q
k−kB

+w
y

k−kB

))
+w

t
k + rk+kTR

,
(19)

sk = (I−U(uk))
(
Γ
(
q
k−kB

)
+w

y

k−kB

)
. (20)

To consider the measurement uncertainty of the detected
particles, the measurement equation (15) is extended by the
additive noise term vk ∈ R4 to

zk = Γ
(
q
k−kQY

)
q
k−kQY

+ vk . (21)

Note that we incorporate only measurements of y, as opposed
to the deterministic MPC of [9], in which measurements of
both y and q were used.

C. Identification

The model parameters consist of the coefficients of the
functions ϵ(q

k
) and ζ(q

k
) from (9), which we again model as

quadratic polynomials, and the parameters of the covariance
matrices of the noise effects. As in [9], we use DEM–CFD
simulations for identification with a sampling time equal to
the time difference between the control time steps, in our case
62.5ms.

1) Function Coefficients: To ensure that the values of the
functions ϵ and ζ fall within the statistically valid range of [0, 1],
we use constrained least squares for parameter identification.
For this, we employ the active set method using the condition
that ϵ and ζ should be in [0, 1] within the prevailing mass
flow interval

[
0, q

max

]
, q

max
=

[
qPmax qNmax

]⊤
(in our

simulation model, qP, qN ∈ [0 g s−1, 400 g s−1]). The identified
parameters are shown in Tab. I.

2) System and Measurement Noise: To identify the noise
covariances of wr

k and w
y

k , the deviations of the particle mass
flows from the DEM–CFD simulation and the deterministic
model are considered. In our case, this yields the empirical
covariance matrices

Cr
w =

[
57.76 0
0 8.50

]
g2 s−2 , (22)

C
y
w =


2.20 0.00 −2.21 0
0.00 0.39 0 −0.39
−2.21 0 2.22 0

0 −0.39 0 0.40

 g2 s−2 . (23)

Note that according to the aforementioned assumptions, the
mass flows of accepted and rejected particles are uncorrelated.

The function parameters of σ2
tP(u

P
k ), σ

2
tN(u

N
k ) are obtained

by the least squares method using data from DEM–CFD
simulations with constant actions. This yields

σ2
tP(u

P
k ) = 2669 g2 s−2 · (uP

k )
3 − 2250 g2 s−2 · (uP

k )
2

+ 500.8 g2 s−2 · uP
k + 0.01 g2 s−2 ,

(24)

σ2
tN(u

N
k ) = 858.7 g2 s−2 · (uN

k )
3 − 552.9 g2 s−2 · (uN

k )
2

+ 149.1 g2 s−2 · uN
k + 0.01 g2 s−2 .

(25)

Since all measured values are exactly available in the DEM–
CFD simulation, the measurement noise vk is added artificially
in the later evaluations.

VI. SNMPC

Based on the identified stochastic model, we now present
the four proposed SNMPCs. In what follows, we first explain
our key ideas before describing the prediction and filter steps,
the objective function, and the four controllers in detail.
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TABLE II
OVERVIEW OF OUR PROPOSED SNMPCS FOR THE SORTING SYSTEM

Approach OLF CLF

global OLF–PBVI: DP with
action space discretization

CLF–PBVI: DP with
action space discretization

local
OLF–TO: TO using SQP
and zero returned mass
flow as reference trajectory

CLF–TO: TO using SQP
and zero returned mass
flow as reference trajectory

A. Key Ideas

For SOC, we investigate two OLF and two CLF SNMPCs,
one each from the class of local or global approaches, as
displayed in Tab. II. Our motivation for considering both
local and global controllers is that while most state-of-the-art
approaches are local, they may end up in a poor local optimum,
i.e., they may not sufficiently explore the search space. On
the other hand, for our low-dimensional system, also global
action-discretization approaches are applicable, for which it is
at least known that the deviation of computed and true values
is bounded and decreases with a finer grid [14]. However,
they may not be as accurate as local approaches due to their
intrinsic limitation to a discretized action set. Considering both
approaches thus offers a good chance to see which effect is
more pronounced, therefore confirming the suitability of the
individual controllers by empirical comparison.

Our global approach is based on an appropriate discretization
of the input space using an adaptive method based on the one in
Perseus [16]. We extend this method by incorporating a fitness
proportional selection of discrete control inputs that worked
well in previous time steps, thus incorporating a learning
mechanism that learns from previous runs of the algorithm.
Our local approach uses an SQP method similar to the one
employed in [25]. For the initial solution, we choose the open-
loop sequence, i.e., no mass flow is returned. This is because
one of our major goals is to improve upon this solution. To deal
with the nonlinearities of our system during state estimation,
we assume all disturbances to be additive Gaussian and deploy
the Smart Sampling Kalman Filter (S2KF) [48], [49] to the
problem of nonlinear state prediction and filtering.

B. Prediction and Filter Steps

For filtering and prediction, the system’s state representation,
system (19), and output equation (20) are reformulated so
that they cover only the necessary quantities and time steps.
This is based on the observation that starting from q

k−kB
,

the action uk only affects q and s at times k + kA and k,
respectively, as well as their k̃ = kA + kB time multiples.
Here, k̃ corresponds to the time for one circulation through the
system. Thus, iterations of the prediction and filter steps can
be performed w.r.t. multiples of k̃ instead of w.r.t. multiples
of k. We therefore define the augmented state vector

xk,n =

[
q
k,n

sk,n

]
=

[
q
k+n·k̃−kB

sk+(n−1)·k̃

]
, (26)

where the second index n ∈ N0 of the state xk,n specifies the
future n multiples of k̃ starting from time k, i.e., xk,n = xk+k̃n.

This transformation can be viewed as treating k̂ independent
states in parallel, one for each time step k in k̃. It eliminates
evaluating intermediate time steps during the optimization
within the control horizon, on which the targeted control
variable u∗

k,0 has no influence. Substituting (26) into the system
and measurement equations (19), (20) and (21) leads to the
augmented system, output, and measurement equations

q
k,n+1

= N
(
U
(
uk,n

) (
Γ
(
q
k,n

)
q
k,n

+w
y

k,n

))
+w

t
k,n + rk,n ,

(27)

sk,n+1 =
(
I−U

(
uk,n

)) (
Γ
(
q
k,n

)
+w

y

k,n

)
, (28)

zk,n = Γ(q
k,n

)q
k,n

+ vk,n (29)

used in the prediction and filter steps.
While OLF SNMPCs use the measurement equation (29)

only for state estimation before the optimization within the
control horizon, i.e., at stage n = 0, the CLF SNMPCs also
evaluate (29) within the optimization. Therefore, we incorporate
future virtual measurements ẑk,n = E

{
zk,n

}
in the filter steps

of the CLF optimization problem.
For both OLF and CLF approaches, the S2KF [48], [49]

is employed to the task of state prediction and filtering. The
S2KF, similar to the Unscented Kalman Filter (UKF) [50],
uses deterministic samples to represent the uncertainty. Thus,
all densities involved are represented by a set of samples and
all operations are implemented using samples. Since the mass
flows in the model description are restricted to non-negative
real values, invalid samples can occur due to the unrestricted
deterministic sampling that is used in the S2KF. In particular,
this concerns the functions ϵ, ζ, which are not defined for
negative values. To avoid processing invalid samples, we shift
them to the closest point (given by the Euclidean distance)
on the edge of the valid range using the method of [51]. For
example, if

[
−1 −1

]⊤
is a sample of q, it is shifted to the[

0 0
]⊤

in order to stay within the valid range R2
≥0. It should

be noted that shifting invalid samples also causes a shift in
the mean and higher moments. Since in preliminary results,
we could not observe an accuracy gain when additionally
inserting a correction step for the first two moments, we refrain
from correcting the moments after shifting in favor of a lower
computational complexity of the SNMPC.

C. Objective Function

The objective function to be minimized is in the form

Jk = E

{
N∑

n=1

(
gn(xk,n) + pn(xk,n)

)∣∣∣∣∣Ik
}

, (30)

with pn(xk,n) being an additional penalty term and zero
terminal costs. The one-step objective function

gn(xk,n) = cqg
q
n(qk,n

) + csgsn(sk,n) (31)

builds upon the deterministic formulation of [9]. It evaluates
the sorting results after the separation unit via g

q
n(qk,n

) and at
the sorting system’s output via g

s
n(sk,n) using a weighted sum

of both with constants cq, cs ≥ 0. Similar to the deterministic
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MPC, gsn(sk,n) and g
q
n(qk,n

) are given by the weighted sum
of TNR and TPR

gsn(sk,n) = cP
sTP
k,n

sTP
k,n + sFNk,n

+ cN
sTN
k,n

sTN
k,n + sFPk,n

, (32)

g
q
n(qk,n

) = cϵϵ(q
k,n

) + cζζ(q
k,n

) (33)

with weights cP, cN ≤ 0 and cϵ, cζ ≤ 0. Note that g
q
n(qk,n

)

evaluates the TNR and TPR after the separation unit, thus
attempting to directly improve the separation and allowing for
shorter control horizons. The penalty term

pn(xk,n) = p
q
n(qk,n

) + psn(sk,n) (34)

includes the range constraint on the mass flows q
k,n

and chance
constraints for minimum accuracies. The range limitation

p
q
n(qk,n

) = cPQ
(
qP
k,n − qPmax

)
1R>0

(
qP
k,n − qPmax

)
+ cNQ

(
qN
k,n − qNmax

)
1R>0

(
qN
k,n − qNmax

)
,

(35)

with the indicator function 1(·)(·) and appropriately large
chosen weights cPQ, c

N
Q ≥ 0 is designed to limit the operating

point q
k,n

of the separation unit to
[
0, q

max

]
, i.e., to the

identified domain of ϵ and ζ. In addition, p
q
n(qk,n

) penalizes
the accumulation of mass flow on the belt.

The chance constraint psn(sk,n) allows specifying a minimum
accuracy in the form of a minimum TNR and TPR, TNRmin,
TPRmin, both in [0, 1), which should be respected with
confidence ηTNR and ηTPR, respectively. For this, we use

psn(sk,n) =
∑

a∈{TPR,TNR}

caw(a)1R≥0
(w(a)) , (36)

w(a) = ηa − Pr
(
a(sk,n) ≥ amin

)
, (37)

with weights ca ≥ 0. Here, the penalty term includes the
deviation of ηa and Pr

(
a(sk,n) ≥ amin

)
, which allows for

the calculations of gradients during the optimization. Note
that it is reported that violating constraints within acceptable
probabilistic limits can lead to better overall results [52], which
is an additional advantage of chance constraints compared with
strict optimization constraints. Again, the chance constraint
and the expectations in the objective function are evaluated
based on samples, using the state samples from the S2KF.

D. Global Control Using Discretized Actions

For global OLF and CLF control, we use a discretization of
the control input space and an approach similar to [15] and [12]
for creating tree structures. The tree consists of edges, each
corresponding to an action or virtual measurement, and nodes
corresponding to predicted or filtered states, respectively. The
root node represents the current state xk,0, and the objective
function (30) is then minimized recursively w.r.t. the action
sequence uk,0:N−1 from the leaf nodes to the root node by the
DP algorithm. For computing the expectations involved in DP,
the samples of the S2KF are used again.

Since creating tree structures requires control inputs from a
discrete set A′, we discretize A = [0, 1]2 using an extended
version of the continuous actions mapping method of [16]
(see Fig. 4 for an illustration). The extended approach is

System
ak(xk,uk,wk)

Optimization
min

uk,0:N−1
Jk

AU

AN
b

⋃
Aold

b

Action Mapping

A′

u∗
k

RW

Fig. 4. Global control scheme with recursive action mapping for discretizing
a continuous action space A into a finite set A′. The discrete actions in A′

are used in the optimization and the best action u∗
k is applied to the system

and stored in Aold
b . The set A′ consists of a subset AU containing samples

uniformly drawn from A, a subset AN
b with samples drawn from a Gaussian

distribution centered at the best-known action, and a set of stored, previously
applied action samples Aold

b . Fitness proportional selection [53] (denoted by
the roulette wheel RW) is used to draw multiple action samples from Aold

b .
For simplicity, measurements and state estimates are not shown.

based on fitness proportional selection, as applied in evo-
lutionary algorithms [53]. Therefore, Aold

b is expanded to
{um, Jm}Mm=1 so that it contains the M best applied actions um

of the previous optimization steps and their objective function
values Jm. Actions from Aold

b are assigned a probability
Pr(um) = J̃m/

∑M
i=1 J̃i depending on their objective function

value. Since Jm can also be positive in rare cases by violating
constraints, J̃m = Jm −max({J1, . . . , JM}) guarantees that
all values are less than or equal to zero and thus all Pr(um)
correspond to valid probabilities. Based on the assigned
probabilities, M ′ ∈ [1, . . . ,M ] action samples are drawn from
Aold

b and become elements of A′. In the next iteration, the
optimization result u∗

k ∈ A′ replaces the um with the highest
objective function value in Aold

b and the algorithm is repeated.
Due to the similarities to the PBVI method [16] regarding
the action sampling, we refer to the two global controllers as
OLF–PBVI and CLF–PBVI.

E. Trajectory Optimization

For OLF–TO and CLF–TO control, we combine the method
of [24] for evaluating OLF and CLF cost functions given a
fixed control sequence with the SQP scheme for constrained
optimization of [25]. Therefore, the first step of the cost
function evaluation is to construct a state–action trajectory
from a given action sequence starting from the current state
xk,0, by stepping forward in time. In the case of OLF control,
the sequence of states is generated by repeatedly applying the
prediction step of the S2KF. In CLF control, additional S2KF
filter steps are performed each time a virtual measurement
should be incorporated. In the second step, the trajectory’s
cumulated cost Jk is calculated by going backward in time
using the samples of the S2KF for evaluating all involved
expectations. The optimization problem for SQP then reads

min
uk,0:N−1

Jk , s.t. 0 ≤ uk,0:N−1 ≤ 1 . (38)

Note that SQP is an iterative algorithm that calls the cost
function several times during optimization, each time with a
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different action sequence. As an initial reference trajectory
for the optimization, we propose to use the open-loop action
sequence uk,0:N−1 = 0. This is because improving upon
the open-loop sequence is one of our major goals, and the
computational effort is reduced.

VII. SIMULATION

We compare the two proposed CLF and OLF SNMPCs with
the deterministic MPC of [9] (referred to as NMPC) and a
sorter without recirculation (referred to as open-loop) on a static
and two dynamic scenarios. In the following, we describe the
experimental settings and then present our results, whereby we
distinguish between batch-mode and continuous-mode results.

A. DEM–CFD Model Parameters

We use the DEM–CFD model of the sorter with recirculation
(see Fig. 2), the model parameters, and the particle models
of [9]. Thus, the time delays kRQ, kQS, kQS, kYT, and kVR

correspond to 445ms, 125ms, 0 s, 0 s, and 3.7425 s. As we
use a sampling time of 62.5ms, the values of kA, kB, and k̃
equal 67, 2, and 69 time steps, respectively. As particle models,
we use models of brick and sand-lime brick, where brick is
considered as material to be ejected. Both particle models have
diameters from 4mm to 8mm.

B. Parameters of the Controller

For preprocessing the raw measurements of y from the DEM–
CFD simulation, we apply a moving average filter covering a
range of ten time steps that smooths high-frequency fluctuations
(similar to [9]). While the deterministic NMPC directly uses the
smoothed values, we corrupt them with artificial measurement
noise for the SNMPCs. The covariance of the measurement
noise vk is assumed to be diagonal and time-invariant, i.e.,
C

v
k = diag(

[
σTP σFP σFN σTN

]2
) with σ = σTP =

σFP = σFN = σTN. Its parameter σ is selected according to
the typical deviations in the position measurements that can
be observed after image processing in optical sorters. Since
these are usually in the range of 1% of the image width, we
choose σ so that 3σ corresponds to a deviation of 1%. We
further assume that d is known to the controllers, i.e., that we
can measure the input mass flow up to time step k + L with
the sequence length L = (N − 1) · k̃ + kVR. The SNMPC
control horizon is set to N = 2, and the NMPC horizon is set
accordingly so that they cover the same period. The weights
of (31) that balance the costs evaluated at the separation unit
and the sorter’s output are set to cq = cs = 0.5. Furthermore,
we set cP = cϵ and cN = cζ . Violations of the range limits
from (35) are penalized by cPQ, c

N
Q = − 1

100 · E
{
gn(xk,n)

}
.

For the global methods, we use a covariance CA = 0.1 · I to
generate the normally distributed part of the action mapping.
The number of mapped actions per subset of A′ is set to 3,
i.e., |AU | = |AN

b | = M ′ = 3. The number of applied actions
stored in Aold

b is M = 10. The initialization is done with an
equidistant grid of uP, uN ∈ [0, 1]. All controllers apply only
the next action u∗

k to the system.

TABLE III
SCENARIOS CONSIDERED IN THE SIMULATIONS

Scenario |d(t)| in g s−1 dP(t)/|d(t)| cN/cP TPRmin
(ηTPR)

S1 100 0.9 1/10 0
S2 80 + 30 sin(2πt/10 s) 0.9 10 0
S3 80 + 30 sin(2πt/10 s) 0.9 10 0.94 (0.7)
S4 80 0.9 + 0.05 sin(2πt/5 s) 10 0
S5 80 0.9 + 0.05 sin(2πt/5 s) 10 0.94 (0.7)

TABLE IV
BATCH-MODE TNR, TPR, AND RATE (32) FOR THE SCENARIOS S1–S5

AFTER 60 s OF SORTING (ALL DISPLAYED QUANTITIES ARE IN %)

Ope
n-l

oo
p

NM
PC

OLF–P
BVI

OLF–T
O

CLF–P
BVI

CLF–T
O

S1
TNR 98.38 93.35 97.28 97.68 97.82 98.41
TPR 95.46 96.33 95.98 95.91 95.97 96.31
Rate 95.72 96.06 96.10 96.07 96.14 96.50

S2
TNR 98.80 99.68 99.62 99.75 99.39 99.88
TPR 96.35 88.65 93.03 90.03 91.43 90.36
Rate 98.57 98.68 99.02 98.87 98.67 99.01

S3
TNR 98.80 99.68 98.98 99.70 99.17 99.76
TPR 96.35 88.65 94.31 92.48 94.11 92.15
Rate 98.57 98.68 98.55 99.04 98.71 99.07

S4
TNR 98.70 99.40 99.25 99.56 99.41 99.74
TPR 96.51 90.40 92.56 91.86 92.36 91.42
Rate 98.50 98.58 98.64 98.86 98.77 98.99

S5
TNR 98.70 99.40 99.23 99.62 99.28 99.30
TPR 96.51 90.40 93.77 93.53 93.23 93.57
Rate 98.50 98.58 98.73 99.07 98.73 98.78

C. Scenarios

We examine five distinct sorting scenarios, each spanning
a duration of 60 s. These scenarios are characterized based
on three specific criteria: a constant mixing ratio dP(t)/|d|(t), a
constant total mass flow |d|, or a combination of both these
factors (see Tab. III). In all scenarios, cP = cϵ, cN = cζ ,
and cP + cN = −1 apply. Scenario S1 has a constant input
mass flow of |d| = 100 g s−1 and a constant mixing ratio
of dP(t)/|d(t)| = 0.9 and thus can be regarded as static. The
scenarios S2–S5 consider dynamic situations. Furthermore,
whereas in S1, the objective is to improve the TPR, in S2–S5,
we aim to improve the TNR. Note that S1 precisely corresponds
to a scenario from our previous work [9]. For both S2 and
S3, we consider an input mass flow that evolves according to
80 g s−1 +30 g s−1 sin(2πt/10 s), but a constant mixing ratio of
0.9. Thus, dP is ranging from 45 g s−1 to 99 g s−1. In contrast,
S4 and S5 have a constant input mass flow of 80 g s−1, whereas
the mixing ratio varies according to 0.9+0.05 sin(2πt/5 s). In S3
and S5, we additionally consider a minimum TPR, TPRmin =
0.94, that should not be surpassed by the TPR of the sorting
system with confidence ηTPR = 0.7.

D. Batch-Mode Evaluation

The results of the controller application to a DEM–CFD sim-
ulation model of the optical sorting system with recirculation
for the scenarios S1–S5 are displayed in Tab. IV. Here, we
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TABLE V
CONTINUOUS-MODE (TIME-RELATED) STATISTICS FOR THE COURSE OF MEDIAN AND INTERQUANTILE RANGE OF TNR AND TPR FOR S2 AND S3

S2 S3

Ope
n-l

oo
p

NM
PC

OLF–P
BVI

OLF–T
O

CLF–P
BVI

CLF–T
O

OLF–P
BVI

OLF–T
O

CLF–P
BVI

CLF–T
O

µTNR
Median (in %) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

µTNR
IQR (in p.p.) 7.10 0.00 0.00 0.00 0.16 0.00 4.31 0.00 1.63 0.00

σTNR
IQR (in p.p.) 15.25 0.00 0.00 0.00 1.14 0.00 8.58 0.00 7.79 0.00

µTPR
Median (in %) 99.55 92.48 96.70 91.19 93.87 93.61 97.85 95.29 97.08 93.89

µTPR
IQR (in p.p.) 14.62 31.92 32.77 45.58 35.75 46.33 20.27 50.08 23.09 42.69

σTPR
IQR (in p.p.) 2.54 6.34 19.87 23.68 15.71 4.23 3.26 21.86 6.68 19.66

TABLE VI
CONTINUOUS-MODE (TIME-RELATED) STATISTICS FOR THE COURSE OF MEDIAN AND INTERQUANTILE RANGE OF TNR AND TPR FOR S4 AND S5

S4 S5

Ope
n-l

oo
p

NM
PC

OLF–P
BVI

OLF–T
O

CLF–P
BVI

CLF–T
O

OLF–P
BVI

OLF–T
O

CLF–P
BVI

CLF–T
O

µTNR
Median (in %) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

µTNR
IQR (in p.p.) 2.90 0.36 0.03 0.04 0.33 0.00 0.04 8.18 3.16 0.27

σTNR
IQR (in p.p.) 7.53 1.95 0.57 0.54 2.34 0.00 0.48 27.28 12.02 1.68

µTPR
Median (in %) 100.00 93.82 95.71 94.70 95.12 94.85 96.33 96.39 95.40 97.64

µTPR
IQR (in p.p.) 15.57 34.07 34.54 48.49 32.68 54.48 23.63 39.03 23.98 53.42

σTPR
IQR (in p.p.) 2.86 8.22 12.54 22.01 18.11 25.86 4.15 14.39 4.61 22.18

evaluate the TNR, TPR, and the combined objective (referred
to as rate) according to (32) after 60 s of sorting, i.e., after the
sorting task was completed. This applies to the case where the
optical sorter is used in batch mode, i.e., one is only interested
in the purity of the accumulated sorted masses. Note that for
both the open-loop system and the NMPC, the scenarios S2
and S4 are equivalent to S3 and S5, respectively, as neither
allows the specification of a chance constraint.

All considered controllers succeed in improving the TPR
(for S1) or TNR (for S2–S5), compared with the sorter without
recirculation. Thus, all controllers reach their goal to either
improve TNR or TPR as determined by the chosen weights.
Comparing the rate, all stochastic controllers outperform the
previously known deterministic NMPC in all scenarios. For
example, considering S1, the best SNMPC, the CLF–TO,
achieves a TPR of 96.31% or an improvement of approximately
0.85 p.p. compared with the open-loop system and a rate of
96.5%, which is 0.44 p.p. above the deterministic NMPC.
Interestingly, the CLF–TO was able to also improve its TNR
compared with the open-loop system, whereas the deterministic
NMPC suffers from a decrease in TNR. Looking at S2, once
again, the SNMPC outperforms the deterministic NMPC and
the open-loop system. The CLF–TO controller achieves the
highest TNR of 99.88% with an improvement of 1.08 p.p.
compared to the open-loop system.

Introducing the chance constraint for the TPR, as in S3 and
S5, generally slightly decreases the achieved TNRs compared
with S2 and S4. Simultaneously, the sharp decrease in TPR, as
can be observed in S2 and S4, is mitigated by the additional
constraint. For example, comparing S2 and S3, the TNR of CLF–
TO decreases by 0.12 p.p., while the TPR increases by 1.79 p.p.,
thereby enhancing the rate by 0.06 p.p. when applying the
constraint. However, in batch mode, introducing the additional
chance constraint does not necessarily lead to an overall TPR
higher than the desired constraint. To investigate the influence
of the constraint in more detail, we examine the temporal
evolution of the TNR and TPR in the following subsections.

E. Continuous-Mode Evaluation

Due to the dynamic nature of S2–S5, we additionally
consider the TNR and TPR of the sorted mass flows over
time for evaluation rather than the accumulated sorted masses.
Note that this kind of evaluation is suitable for sorters that are
applied in continuous sorting tasks (and not in batch mode),
where high (or stable) and less fluctuating accuracy is of interest
at all times.

1) Evaluation Metrics: For S2–S5, Tab. V and Tab. VI
present statistics of TNR and TPR evaluated using a sliding
window of length 5 s. To assess the average accuracy within
the windows, the mean of the windows’ median TNR and



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, OCTOBER 2024 13

0 10 20 30 40 50 60
Time in s

84

86

88

90

92

94

96

98

100
T
P
R
in
%

CLF{PBVI S2
CLF{PBVI S3
TPRmin

Open-Loop
NMPC

(a) TPR for CLF–PBVI, NMPC, and the open loop system in S2 and S3.
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(b) TPR for CLF–TO, NMPC, and the open loop system in S4 and S5.

Fig. 5. Illustration of the impact of the chance constraints. The graphs show the median within a sliding window of length 5 s, centered on the current
evaluation point. S3 and S5 apply chance constraints while S2 and S4 do not, but otherwise share the same settings with S3 and S5, respectively (see Tab. III).

TPR, µTNR
Median and µTPR

Median, is used. A high µTNR
Median, µTPR

Median

indicates a high degree of purity. To account for the magnitude
of deviations within each window, we calculate the mean of
the windows’ interquantile ranges w.r.t. the 5% and 95%
quantile range, µTNR

IQR and µTPR
IQR (the smaller, the better). To

compare the deviations across the windows, we use the standard
deviation of the interquartile ranges, σTNR

Median and σTPR
Median (the

smaller, the better). Whereas the mean of the interquantile
ranges thus represents the average overall noise level, their
standard deviation is a measure of the deviations in the noise
w.r.t. different points in time. For example, a high standard
deviation indicates that noise levels in the windows strongly
differ between different times during the evaluation scenario.

2) Evaluation of Medians: As can be seen from Tab. V and
Tab. VI, as a consequence of optimizing the TNR in S2–S5,
the averaged median TNR for all controllers within the sliding
window remains consistently at 100%. Compared with the
open-loop system, the averaged medians of the TPR decrease
for all controllers. For example, the average median TPR of the
CLF–PBVI in S2 decreases by 5.68 p.p. to 93.87% compared
with the open-loop system. Note that besides the averaged
median TNR, the averaged median TPR for the open-loop
case in S4 is also at 100%, which is the best result, although
the cumulative open-loop rate (see Tab. IV) is lower than
the resulting rates obtained using the controllers. This can be
explained by the fact that the evaluation through the sliding
windows does not take into account the absolute amount of
sorted mass flow within each window, as both TNR and TPR
are relative measures. For qualitative comparison, the medians
of the TPR within each sliding window are displayed in Fig. 5a
for the example of the CLF–PBVI, NMPC, and the open-loop
system. Similarly, Fig. 5b shows the TPR medians for CLF–TO,
NMPC, and the open-loop system in S4 and S5. The curves
suggest that the deviations in TPR are much more pronounced
when improving the TNR using controlled recirculation.

3) Evaluation of Interquantile Ranges: The hypothesis that
the deviations in TPR are increased when the TNR is improving
is confirmed by comparing the interquantile ranges of the
TNR with the open-loop system in Tab. V and Tab. VI.
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Fig. 6. Amplitude of the frequency response of CLF–TO, NMPC, and the
open-loop system for the TNR and TPR in S2. The curves show that the
fluctuations in the TNR decrease compared with the open-loop system, while
the fluctuations in the TPR increase.

Simultaneously, regarding the TNR in S2–S4, it can be seen
that all controllers reduce both the mean interquantile range
and their standard deviation compared with the open-loop
system. Only in S5, OLF–TO and CLF–PBVI have greater
µTNR
IQR and σTNR

IQR than the open-loop approach. In S3, all
controllers except CLF–PBVI reduce µTNR

IQR and σTNR
IQR to 0 p.p.,

i.e., eliminate almost all fluctuations in the TNR. This effect is
more conveniently illustrated in Fig. 6, where we plotted the
amplitudes of the frequency responses of the TNR and TPR
for the CLF–TO, NMPC, and the open-loop system. Note that
this representation does not use sliding windows and is thus
independent of the choice of a window length. As can be seen,
all controllers have lower fluctuations in the TNR than the
open-loop system, while the fluctuations in the TPR increase.

4) Impact of Chance Constraints: Comparing S2 and S4
with S3 and S5, respectively, it can be seen that the additional
chance constraint on the TNR leads to average median TPRs
close to or above the desired threshold. For a qualitative
comparison, see Fig. 5. Additionally, except for OLF–TO in
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S3, the constraint leads to decreasing mean interquantile ranges
of the TPR µTPR

IQR (cf. Tab. V and Tab. VI). Thus, incorporating
the chance constraint raises the TPR to the desired level while
simultaneously reducing the noise in the TPR.

VIII. SUMMARY OF RESULTS

Our results show that the proposed controllers improve
on the open-loop case and outperform the previously known
deterministic MPC in both static and dynamic situations. For
example, in batch-mode, they achieve TNRs up to 99.88%
or improvements in TNR up to 1.08 p.p. compared with the
open-loop system and 0.2 p.p. compared with the deterministic
NMPC (see S2 in Tab. IV). In other words, in this scenario,
the error given by 1−TNR, which by definition is proportional
to the number of FPs, was effectively reduced by a factor of
10 compared with the open loop system and by a factor of
2.7 compared with the NMPC. For dynamic situations, the
controllers not only improve either the TPR or TNR but also
reduce its deviation to almost zero. Again, the SNMPCs in most
cases perform better than the deterministic NMPC. However,
in general, improving TNR and reducing its variance comes
at the cost of decreasing TPR and increasing its variance and
vice versa.

Incorporating chance constraints for a minimum TPR gen-
erally slightly decreases the TNR, but increases the TPR to a
substantial amount (e.g., trading a 0.12 p.p. decrease in TNR
with an 1.79 p.p. increase in TPR for CLF–TO in S2 and
S3). In dynamic scenarios, the chance constraint raises the
TPR to the desired level in good agreement with the specified
confidence level while simultaneously reducing the noise in the
TPR. In general, incorporating chance constraints can therefore
be considered a valuable strategy.

When comparing the scenarios, fortunately, no significant
differences in behavior between static and dynamic mass flows
with either fluctuating total mass flow or mixing ratio can be
observed. In all cases, improvements are in a similar range,
indicating that the controllers are able to cope with different
kinds of input disturbances. Comparing the SNMPCs, the CLF–
TO in most cases achieves the highest accuracies and low
deviations. Therefore, it proves to be particularly suitable for
our task.

IX. CONCLUSION

We proposed two CLF and two OLF SNMPCs for closed-
loop control of an optical sorting system with material recir-
culation. The stochastic formulation of the controllers allows
specifying a minimal TNR or TPR that should be maintained
in any plant condition with a predefined level of confidence.
We showed that the proposed controllers achieved the desired
sorting accuracy in static and highly dynamic scenarios, with
sorting accuracies generally higher than those achieved with a
sorter without recirculation. The results thereby demonstrate
that controlled recirculation can reduce the number of falsely
undeflected particles by a factor of up to 10. Furthermore,
fluctuations in either TNR or TPR are effectively reduced.

Sorting applications can greatly benefit from our approach.
Since the sorting accuracy is in general higher than for a sorter

without recirculation, our method allows for either smaller or
fewer sorters (e.g., by eliminating the need for a second sorting
stage) or higher mass flows to be sorted, thus enhancing the
profitability of the plant. In particular, it eliminates the need
for laborious and costly hardware or software adjustments,
which are often required prior to a sorting task when the
desired accuracy cannot be achieved ad hoc. It allows adjusting
the trade-off between TNR and TPR, i.e., the purity of the
two sorted fractions, at runtime, thus enabling more flexible
sorting. In particular, since a desired minimum accuracy for
either TNR or TPR can be specified, the focus can be moved
to improving the other quantity, thereby reducing losses by
minimizing FNs or FPs, respectively. Fluctuations in either
TNR or TPR are effectively reduced, making the approach
valuable for continuously operating plants where optical sorters
are part of a process chain, and achieving a certain quality at
any point in time is crucial.
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