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Abstract—Sensor-based sorting is a machine vision ap-
plication that has found industrial application in various
fields. An accept-or-reject task is executed by separating
a material stream into two fractions. Current systems use
line-scanning sensors, which is convenient as the material
is perceived during transportation. However, line-scanning
sensors yield a single observation of each object and no
information about their movement. Due to a delay between
localization and separation, assumptions regarding the lo-
cation and point in time for separation need to be made
based on the prior localization. Hence, it is necessary to
ensure that all objects are transported at uniform velocities.
This is often a complex and costly solution. In this paper,
we propose a new method for reliably separating particles
at non-uniform velocities. The problem is transferred from
a mechanical to an algorithmic level. Our novel advanced
image processing approach includes equipping the sorter
with an area-scan camera in combination with a real-time
multiobject tracking system, which enables predictions of
the location of individual objects for separation. For the
experimental validation of our approach, we present a
modular sorting system, which allows comparing sorting
results using a line-scan and area-scan camera. Results
show that our approach performs reliable separation and
hence increases sorting efficiency.

Index Terms—Automated visual inspection, machine vi-
sion, real-time multiobject tracking, sensor-based sorting.
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SENSOR-BASED SORTING is a machine vision application
that is of high relevance in various industrial fields.

Commonly, the task can be understood as performing an
accept-or-reject decision with the goal to detect and remove
defect, faulty, low-quality or foreign items from a stream of
material in a production line [1]. Corresponding systems are
typically used for quality inspection. The particular motivation
depends on the field of application. For instance, in the field of
mineral processing, the efficient extraction and recovery of raw
materials is crucial due to limited existing reserves. Examples
include the sorting of porphyry copper [2], quartz, magnesite
and gold ores [3], [4]. In food processing, products, e.g., dried
vegetables, fruits [5] and nuts [6], often need to be cleaned from
foreign, potentially dangerous objects as well as low-quality and
damaged entities. Furthermore, sensor-based sorting solutions
are a key technology in recycling and are often implemented
as part of waste processing with the goal to separate materials
for reuse [7]. For instance, recent works propose usage for
automated sorting of plastic flakes [8] and electronic waste [9].
In an industrial application, systems typically run twenty-four
hours a day, seven days a week, consequently handling massive
amounts of the goods to be sorted. Hence, any improvements
in sorting efficiency already have enormous economic and
ecologic impact due to the large quantities involved.

A. Functional Principle

A schematic illustration of sensor-based sorting systems is
provided in Fig. 1. Obviously, the design and implementation
involves several disciplines and has hence attracted research
from various perspectives. From an abstract point of view,
the material is fed into the system onto a transportation
mechanism, for instance a conveyor belt or chute. Although
best practice strategies have been acquired, for instance as
presented in [10] regarding chutes, design choices typically
depend on the product to be sorted. Along the way, the
material is perceived by one or multiple sensors, possibly
in combination with an appropriate illumination device as for
optical sensors [11]. State-of-the-art systems use line-scanning
sensors for this purpose. Perception can take place either after
the material has been discharged from the transport mechanism,
as illustrated in Figs. 1(a) to 1(c), or while it is still on it,



(a) Sorter with conveyor belt. (b) Sorter with chute.

(c) Free fall sorter. (d) Sorter with conveyor belt.

Fig. 1. Schematic illustration of common types of sensor-based sorting
systems. The green objects represent particles to be accepted and the
red ones those to be removed from the stream. The yellow ray denotes
the field of view of the sensor and the blue ray the compressed air
released to deflect an object. In Figs. 1(a) to 1(c), detection of particles
happens during the flight phase. In contrast, in Fig. 1(d), detection
happens on the transportation device.

see Fig. 1(d). Sorting applications relying on high material
throughput, as given in most industrial applications, typically
use imaging sensors. Such types of systems require a real-time
capable data processing pipeline, which typically consists of
image acquisition, image pre-processing, feature extraction,
classification and actuator control. With respect to real-time
requirements, firm deadlines apply for the deflection of objects
since the actuators need to be triggered exactly when the objects
pass the separation stage. Whenever this deadline is missed,
these objects falsely remain in the accepted material. Besides
monochrome and color cameras [3], [12], examples include
X-ray transmission [13]–[16], near-infrared and hyperspectral
cameras [2], [17]–[19] as well as systems that combine different
sensors [8], [16], [20]. An example for non-imaging sensors
is the application of microphones, for instance to characterize
materials based on impact resonant acoustic emissions [8]. In
this paper, we are interested in the most common system type,
i.e., systems using imaging sensors.

Data analysis is performed on the image with the goal to
localize and classify the individual objects contained in the
feed material. Based on the classification, a sorting decision is
derived for each object. The choice of an appropriate sensor
depends on the sorting task and the material’s classification
criteria at hand. Typically, the image data needs to be pre-
processed in a first step. Following that, the image is segmented
and regions containing individual objects are extracted. Classi-
fication is performed on the basis of certain features, e.g., color
or geometry related, and a sorting decision is derived. The
decision is carried out by means of a separation mechanism.
In theory, an arbitrary number of classes can be distinguished
at the detection stage and separation into several fractions
is possible. However, in industrial applications, the task is

preferably realized as a binary sorting task, i.e., product and
residues, since multi-way sorting requires complex mechanical
handling.

For the successful application of sensor-based sorting, the
feed material is typically preconditioned in terms of using
defined particle size distributions, which can be obtained via
screening, for instance. Especially for small, cohesive materials,
physical separation is typically performed using an array of
compressed air nozzles [21], [22]. The minimum particle size
that can be handled by a system is limited by the pneumatic
resolution, proximity between objects and characteristics of
the material transport. The system needs to be capable of
deflecting single particles without causing any disturbances
such as turbulence of other particles. For larger products,
electro-mechanical fingers or robot arms are also used. However,
in this paper, we focus on pneumatic separation.

There are two main types of errors that can occur during
the sorting process, potentially leading to a sorting error. The
first type are errors in material recognition. In case of such an
error, the data analysis reaches a wrong conclusion regarding
the classification of a particle, which, for instance, can lead to
the sorting decision of rejection although the particle was to
be accepted. The second type are errors in material separation.
Here, a correct sorting decision is derived, yet the particle is
not physically removed from the product, for instance due to
poor control of the actuator. This is the type of error we focus
on in this paper, the recognition error is not considered.

B. Problem Formulation and Contribution

Besides the actual conveyance, the transportation phase
aims at creating a monolayer of the material, i.e., avoid that
particles lie on top of each other, decreasing proximity between
individual objects, i.e., avoid the formation of clusters, and
achieving ideal flow control. Creating a monolayer ensures that
no occlusions occur. Avoiding proximity is important for the
deflection of individual objects, since the pneumatic resolution,
both spatial and temporal, is limited and co-deflections of
objects, i.e., the unwanted deflection of objects nearby an
object that is to be deflected, are to be avoided. Ideal flow
control means that all objects shall be accelerated to the same
velocity, whereas velocity perpendicular to transport direction
should be eliminated. This is crucial since there exists a
temporal gap between the perception and the separation of
the material, which is caused by the delay introduced by the
required data processing, see Fig. 2. Localization is performed
during perception and hence prior to separation. Due to usage
of a line-scanning sensor, only a single image is available for
each object. Therefore, no information regarding the motion of
an object can be derived. Yet, in order to safely deflect objects
that are to be removed from the stream, a prediction needs to
be performed when and where they will reach the separation
stage. Hence, a fixed delay between perception and separation
is assumed for all particles. However, in the case of objects
for which this assumption does not apply, an error may occur
during separation, see Fig. 3(a).

One approach to minimizing this error is to place the scan
line as close as possible to the separation line. Although
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Fig. 2. Schematic workflow in sensor-based sorting. The schema
illustrates that processing of the sensor data takes place while the
material is still moving. Therefore, the location and point in time for
separation need to be predicted during evaluation.

(a) Line-scan system: The object is
only observed at one time point and
no motion information is available.
This results in an error in separa-
tion.

(b) Advanced image processing sys-
tem: The object is observed several
times. Motion information is used
to calculate the deflection window.

Fig. 3. Schematic illustration of the observation and separation process
as seen from a view from above. The red rhombus represents a particle to
be deflected at several time points. The box illustrates the localization as
obtained from the image data and the dashed box the derived deflection
pattern.

response times of sensors and processing systems are decreasing
due to new developments, the distance cannot be arbitrarily
minimized. Due to the firm real-time requirements, even in
times of high system load caused by high material throughput,
data processing needs to be completed before the material
passes the separation stage. Even a few milliseconds of delay
can cause the estimated position to differ from the actual
position if there is no ideal flow control.

For certain materials, achieving optimal flow control is
rather hard. A common strategy to increase the reliability
of deflecting unwanted objects is to enlarge the deflection
window, i.e., activate more nozzles longer than supposedly
needed. However, this implies two major disadvantages. Firstly,
the risk of falsely co-deflecting objects increases. Secondly,
the amount of compressed air required to deflect the object
increases. The latter is particularly noteworthy considering the
high energy demand and hence costs associated with the usage
of compressed air [23]. In [24], it is estimated that about 70%
of the operational costs of sensor-based sorting systems is
caused by compressed air and air extraction. A mechanical
solution to the problem is the application of very long conveyor
belts in order to gain more time during transportation for the

material to come to rest. However, this solution is quite costly
in terms of purchase costs, maintenance and required space.
Chutes are a much cheaper way of realizing transportation. In
turn, achieving optimal flow control is comparatively hard. The
texture and size of the contact surface of an individual object
strongly impacts its motion along the chute.

In this paper, we demonstrate how deviations in transport
velocity can be handled by our advanced image processing
approach instead of mechanical components. We present a
sorting system equipped with an area-scan camera, a predictive
real-time multiobject tracking system and provide experimental
results for the sorting efficiency in comparison with a con-
ventional line-scan camera setup as contrasted in Fig. 3. Our
system enables accurate, individual estimates per object where
it is moving and even allows deriving information about how
it is moving. Recent advances in CMOS camera technology
support the suitability of our system for industrial application
on a large scale. To our best knowledge, this is the first time
a corresponding system was implemented and results of real
sorting experiments are presented.

C. Related Work
The problem of tracking multiple objects has attracted

intensive research over several decades, especially in the field
of computer vision [25]. There exists a huge diversity of
applications from different specialist areas in which input
data for the tracking system is generated by an imaging
sensor. Corresponding systems can be used to count entities
in the field of view whereas entities appear and disappear
over time, for instance fish in underwater videos [26], vehicles
for traffic flow surveillance [27] or people in video security
applications [28]. Dependent on the system implementation,
predictions of future events can be derived, for instance
collisions at traffic intersections [29]. In the context of quality
control in an industrial setting, a system is proposed in [30]
in which sputters are tracked during a laser-welding process.
The system works at a comparatively high frame rate and
has the purpose to detect only sputter events that are strong
enough to be critical to the welding process. In the context of
sensor-based sorting, utilizing multiobject tracking was first
proposed in [31]. Using a simulation-driven approach [32], it
was shown that predictive tracking can decrease the error in
physical separation [33], [34].

Besides the mere detection and prediction of future events,
tracking objects can also serve the purpose to perform quality
assessment directly based on the motion behaviour. Many works
exist in the field of computer-assisted sperm analysis, both
regarding animal [35] and human sperm quality [36]. The
data from the tracking is here used to measure the motility of
individual spermatozoa, which is an important characteristic for
the quality assessment [37]. In ecoinformatics, motion features
can be used to classify certain species, for instance birds [38].
In [39], [40], tracking has also been proposed to utilize motion-
based features for the characterization of materials in sensor-
based sorting. This approach can enable the discrimination of
optically identical products, although an optical sensor is used.

Many works exist discussing problems in characterization
of materials in sensor-based sorting. However, evaluation



of sorting systems from an holistic point of view appear
to be rather rare. In [41], the authors propose a definition
of separation efficiency and utilize it to quantify sorting
performance as a function of the proximity of objects in
the material feed. They further investigate different feed
characteristics by means of a Monte Carlo simulation and
quantify results based on their prior introduced definition of
sorting efficiency in [42]. Following the concept of receiver-
operating characteristic (ROC) curves, the idea of a sorting
optimization curve (SOC) is presented in [43]. SOCs are
intended to support the choice of an operating point based
on yield and quality factors and predict the sorting quality.
In [3], the authors adapt the conventional approach of confusion
matrices, which are typically used to evaluate a classifier, to
sensor-based sorting. This enables the usage of well-known
figures of merit such as accuracy, specificity and sensitivity.

II. METHODS AND MATERIALS

In this section, we provide a description of the methodolog-
ical approach and the experimental platform that was designed
for this study. In Sec. II-A, we outline the tracking system
developed for sensor-based sorting. Following that, Sec. II-B
introduces the sorting system designed for the evaluation.

A. Predictive Real-Time Multiobject Tracking
In contrast to conventional systems, which use line-scanning

sensors, our system is based on the application of an area-scan
sensor. The difference regarding the format of the obtained
image data is illustrated in Fig. 4. When using line-scanning
sensors, several lines recorded at consecutive time points are
merged in order to obtain a 2D image [44]. Hence, over time,
an image of infinite length is formed. In turn, using an area-
scan sensor yields a stack of 2D images. The crucial difference
is that using the area-scan sensor, individual objects can be
detected at several time points, while line-scan sensor systems
only obtain a single observation. In order to be able to track
multiple objects simultaneously, the correspondences of objects
in consecutive frames need to be determined. More precisely,
for application in sensor-based sorting, several thousand objects
need to be tracked concurrently. Hence, a multiobject tracking
algorithm is used.

Individual objects in the feed are detected using image
processing. More precisely, color-based segmentation in HSI
color space is performed in order to convert a recorded color
image in a segmentation image that partitions the image in
multiple segments. Pixels belonging to the background are
encoded with 0, while any other value represents a certain color
class. In the course of this study, we define intervals for all three
color components, i.e., hue, saturation and intensity, to perform
the segmentation. As depicted in Fig. 5(a), segmentation into
back- and foreground can be preformed by defining a threshold
for the saturation. A threshold for the hue enables distinguishing
between different classes of objects, see Fig. 5(b). Including
the intensity further improves the result.

Since there are typically several objects in an image, individ-
ual objects are identified using connected component analysis
with an 8-connected neighbourhood. Using this representation,

Fig. 4. Comparison of the image data as obtained via line-scan and
area-scan sensors. Over time, the line-scan camera forms an image of
infinite length composed of individual pixel lines, yielding only a single
observation for each object. The are-scan camera acquires overlapping
frames with partly redundant object information. Over time, object are
perceived at different positions at different time points. This allows
deriving motion information.
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Fig. 5. The histograms show the ratio of occurrences of values for
different objects in the image. They indicate that the image can be
segmented based on color information, as depicted by the dashed lines.

we calculate the centroid. For an object covering n pixels
with 2D coordinates pi, i = 1, . . . , n, the centroid is calculated
by 1

n

∑n
i=1 pi. The resulting point object serves as the input

for the tracking algorithm. Hence, we perform point tracking,
which is a common approach for tracking small objects in
images [25].

In accordance to the categorization proposed in [45], our
system implements a detection-based tracking approach with
deterministic output. Moreover, results of the tracking are
required in real-time. Therefore, online tracking is performed,
i.e., images are handled sequentially. We further refer to the
system as predictive tracking since it enables predicting the
point in time and position for the deflection of a particle. A
schematic overview of the system is provided in Fig. 6.

For each object, a standard Kalman filter is used as an
estimator, using the 2D position (x, y)T and the velocities in
both directions, i.e., (vx, vy)T, as state variables. When the
assignments between measurements and tracks are known,
knowledge about the positions of the objects is refined by
performing a Kalman filter update step for each individual
object. For the prediction step, we apply a linear motion
model, more precisely a constant velocity model [46]. The
underlying assumption of this model is that changes to the
velocity are relatively small. For simplicity, the acceleration



Fig. 6. Detailed view on the data processing block from Fig. 2. The
system sequentially receives color images, which are first segmented
based on color. Connected component analysis is then performed in
order to identify individual objects in the image. The centroids of these
objects serve as the input for the multiobject tracking system. The tracking
system performs predictions for the currently existing tracks and identifies
the correspondences between the predictions for and centroids of the
current frame. It handles newly appeared and disappeared objects and
provides the prediction for the separation.

affecting the velocity is modeled as white noise, i.e., we
assume the actual accelerations are temporarily independent
and distributed according to the same probability distribution in
every time step. It is important to note that the parameters of a
motion model are estimated for each tracked object individually
in each time step according to the movement observed so far.
The complexity of the prediction step is O(n) with n denoting
the number of current tracks.

The point correspondences, i.e., the associations between
predictions for and measurements of the current frame, are
identified by solving the linear assignment problem

min
N∑
i=1

M∑
j=1

ai,jxi,j

s.t.
M∑
j=1

xi,j = 1, i = 1, ..., N

N∑
i=1

xi,j = 1, j = 1, ...,M ,

(1)

where N and M represent the number of predictions and
measurements, respectively. The cost function a is implemented
as the Mahalanobis distance. The constraints guarantee a one-to-
one assignment. This problem needs to be solved for each frame
and causes the main computational burden within the tracking
algorithm. Due to its suitability for parallelization, we use the
Auction Algorithm [47] for this purpose. An example image
sequence highlighting results of the detection and tracking
stages is provided in Fig. 7.

In each time step, we estimate the remaining time until an
object will reach the separation stage. Whenever this estimated
time gap reaches a certain threshold, the estimated point in
time as well as position when the object reaches the separation
stage is calculated and transmitted to the separation device.
This threshold is required since it is necessary to transfer the
deflection pattern with some advance to compensate for the
delay induced by the transfer itself as well as the reaction time
of the air valves.

With respect to real-time requirements on the system,
it is important to note that the tracking and performing

(a) Frame at tn.

(b) Frame at tn+1.

(c) Frame at tn+2.

Fig. 7. Three consecutive frames as recorded by the system. The flow
direction of the material is from top to bottom. The detected objects are
highlighted by a red border. The blue circles indicate the current centroids
of the objects and the blue lines the trajectories that the particles have
followed so far.

of predictions for separation is not only required to work
synchronously with the image acquisition, but firm real-time
requirements apply. A sorting decision can only be carried out
until an object to be deflected passed the separation mechanism.
This results in a binary utility function where the utility drops
to zero after the deadline is missed. Therefore, we implement
our system in C++ and exploit parallel processing on the CPU
as well as a graphics processing unit (GPU). For instance, the
Kalman filter update steps can be performed concurrently for
all objects that are currently being tracked. Also, we use the
optimized Auction Algorithm proposed in [48] for solving the
linear assignment problem that is designed for running on a
GPU and is particularly fast due to the usage of optimized
data structures. The results presented in [48] show that the



algorithm is capable of solving the association problem for
about 1000 objects at around 200Hz on a modern GPU. The
algorithm is further robust against missed and faulty detections,
which may be caused by occlusions, collisions are poor objects
detection. This is achieved by implementing a scoring system
for the creation of new tracks as well as the deletion of existing
tracks. Each newly created track is assigned an initial score,
which is increased whenever a measurement is assigned to the
track until a defined maximum score is reached. In turn, if
no measurement of a frame is assigned to the track, the score
is decreased. In case the score drops below zero, the track is
deleted. New tracks are created for measurements that have
not been assigned to a track.

B. Experimental Optical Sorting Platform

For the validation of our approach, alterations on the
hardware of the sorting system are required. More precisely,
the system needs to be equipable both with a line-scan and
an area-scan camera as well as the corresponding illumination
devices. Therefore, for our experiments, we developed a system
that enables rapid prototyping in this respect. A photo of the
resulting construction is provided in Fig. 8.

a) General design: The basis of the sorting system is
the back panel. It is realized as a mechanical breadboard and
contains equidistant perforations that are intended for mounting
different components. The distance between two perforations is
25mm, both horizontally and vertically. The size of the board
used in this study is 142 cm× 102 cm. Adapters are designed
to built an interface between the back panel and commercially
available components.

An electromagnetic feeder, annotated by 1 in Fig. 8, is used to
feed material into the system. It runs at a constant frequency of
50Hz. The amplitude is configurable via a controller containing
a potentiometer and is monitored using a vibration sensor. The
latter ensures a constant feeding rate, for instance independent
of the temperature of the electromagnetic feeder. The chute
considered in this study has a total length of 31 cm and width
of 15 cm, see annotation 2 in Fig. 8. It is made of cold-rolled
steel and hence has a plain and even surface. The illumination
for use with a line-scan camera (see 3a in Fig. 8) consists of
two line-shaped LED bars which are indicated by 3b in Fig. 8.
It is mounted at a position such that the material is observed
after falling off the chute. For usage with the area-scan camera,
an LED ring light with an inner diameter of 21 cm is used.
The observation area and consequently the position of the
ring light is located at the end of the chute, see Fig. 7. In
both cases, the bright field illumination is mounted above
the material stream such that the reflected light is captured
by the camera. Separation of the material is performed by
fast switching compressed air valves. The system contains
an array of 16 valves covering a distance of 16 cm which
can be activated individually, see 4 in Fig. 8. Hence, the
spatial pneumatic resolution is 10mm. The pressure can be
controlled using a pressure regulator. The individual valves are
accessed via a Controller Area Network (CAN). The speed of
communication over the data channel, i.e., the baud rate, is
1000 bd.

Fig. 8. Photo of our experimental system in the laboratory. The setup
corresponds to the scheme provided in Fig. 1(b). The components
as chronologically passed by the feed material are highlighted as
follows: 1: vibrating feeder, 2: chute, 3a: sensor (here: line-scan camera),
3b: illumination (here: LED bars), 4: array of compressed air nozzles.
The red line segment further illustrates the gap between perception and
separation of the material.

b) Image acquisition: For the comparison of sorting
efficiency, experiments are carried out with a line-scan and an
area-scan camera. In both cases, the reflected light from the
particles is captured by the camera sensor. This can be used
to measure color features. The line-scan model used is e2v
AViiVa SC2, which offers 1365 px at a maximum line rate of
14.8 kHz. The area-scan model used is Allied Vision Bonito
CL-400 color camera, which offers a maximum resolution
of 2320 x 1726 px at 192Hz. For both cameras, we use the
Zeiss Classic lense Planar T 1.4/50 ZF.2. Both cameras are
connected to a computer using the Camera Link interface.
Therefore, the computer is also equipped with a programmable
frame grabber from the microEnable 4 series from Silicon
Software. Several image pre-processing steps are performed
directly on the grabber, such as shading, demosaicing (for the
area-scan camera) and generation of the segmentation image.

c) Processing computer system: The computer system
is equipped with an Intel i7-5960X CPU and 16 GB RAM.
Furthermore, it contains a NVIDIA GeForce GT 740 GPU on
which the association step for mulitobject tracking is performed.
The operating system is Microsoft Windows 7 64-bit.

III. TEST METHODOLOGY

In order to allow a fair comparison between the conventional
and our proposed approach, we ensure that all operational sort-
ing parameters are fixed except for the changes to components



(a) Wooden plates. (b) Lentils.

Fig. 9. Products used for the experiments conducted.

owed to the approaches themselves, e.g., illumination, sensor
and data processing. This implies that we are not interested in
presenting an optimal sorting solution for a specific product, but
rather in demonstrating that the proposed approach can increase
sorting performance in a relative fashion. In the following
subsections, the relevant sorting parameters considered in the
study are described.

A. Characteristics of the Material Stream
We perform sorting experiments for two artificially labeled

products: wooden plates and dry lentils, see Fig. 9. The products
were deliberately chosen due to major differences in geometry
and movement behavior on the chute. More precisely, the
wooden plates represent a very homogeneous and the lentils a
highly heterogeneous product in terms of the shape of individual
particles. A thorough description of the wooden plates can be
found in [32]. Their volume is 2mm × 5mm × 6mm. The
plates are artificially separated into two fractions by coloring,
whereas some plates are kept wooden and some are colored blue.
Being a natural product, the volume of the lentils is diverse.
However, most lentils have a diameter of approximately 4mm.
In order to derive a sorting decision, we include yellow and
red lentils in the material stream. Hence, for both products, a
significant difference in color exists to discriminate the product
into two fractions. For our experiments, this allows us to neglect
recognition errors because they do not occur and solely measure
the error in physical separation.

An experiment carried out consists of sorting 200 g of the
product in a batch-wise manner. The mass flow of the material
in our scenario depends on the amplitude of the feeder. We
investigate a single configuration of the feeder that results in
a similar mass flow for both products. The mass flow was
determined experimentally by feeding material through the
system onto a digital weighing scale, which is connected to a
computer in order to record the measured values over time at
a temporal resolution of approximately 18Hz. After starting
the feeding process, the mass flow increases over time until
reaching approximately 5 g s−1. Most of the time of the sorting
process, the feeding rate remains in this state. When only little
material is left in the feeder, the mass flow decreases until
no material is left. With respect to the amount of material to
be deflected, we consider a ratio of 5%. The impact of the
mass flow and ratio to be deflected on sorting performance has
already occasionally been investigated in the literature, e.g.,
in [41], [42].

B. Sensor and Software Parameters
We configure the line-scan camera to run at approximately

7682Hz using a width of 446 pixels. Due to the high required
data transfer rate and the resulting computational burden,
we restrict the area-scan camera to approximately 93 fps.
Consequently, the entire data processing, i.e., demosaicing
the Bayer pattern, color segmentation, connected component
analysis, descriptor extraction, tracking, classification and
transfer of deflection patterns, is granted a processing time of
approximately 10ms on average. Furthermore, the image is
cropped to a width of 2208 pixels. For the area-scan camera,
we report a spatial resolution of approximately 69.58 µm and
for the line-scan camera of 359.65 µm. It is important to note
that the difference is negligible as for both cases the spatial
resolution is many times higher than the pneumatic spatial
resolution.

The deflection pattern describes which nozzles are to be
triggered during which time interval. There exist different
approaches how the pattern can be calculated [49]. As also done
in [42], we use the common approach of using the bounding
box of an object to be deflected to calculate the deflection
pattern. However, we consider two configurations. The first
configuration corresponds to the bounding box of the object as
detected in the image and is referred to as small pattern in the
remainder. The second configuration uses enlarged deflection
patterns and is referred to as large pattern in the remainder.
Here, the window is enlarged both in transport direction and
perpendicular to it. In perpendicular direction, we enlarge the
window on both sides by 5mm, which is motivated by the fact
that this corresponds to half the area covered by a single valve
and hence implies activation of the neighbouring valve on both
sides. With respect to enlargement in transport direction, we
configure an individual parameter per product. This is motivated
by the empirical observation that the deviations in velocity
in transport direction vy, i.e., down the chute, are noticeably
larger for wooden plates than for lentils. For wooden plates,
we extend the window time wise by 7.5ms and for lentils
by 2.2ms before the start and after the end of the object
as described by the estimated bounding box. As has been
mentioned in Sec. I-B, enlarging the deflection pattern can be
used to achieve more reliable deflections. However, it comes at
the cost of increasing the risk of falsely co-deflecting objects
located nearby and increases the amount of compressed air
required.

C. Mechanical Parameters
The distance between the observation line of the line-scan

camera and the separation is approximately 34mm. When
using the area-scan camera, the pixel row located closest to
the separation lies approximately 18mm in front of it. As
mentioned in Sec. II-A, the predicted deflection pattern of an
object to be rejected is transmitted to the separation device
whenever the estimated time remaining until reaching the
separation stage falls below a certain threshold. In our system,
this time threshold is formulated as a multiple k of the duration
of a single frame tframe. The time threshold is then given by

θ := ktframe . (2)



Obviously, it is desirable to set the time threshold as small
as possible in order to use the most recent information of an
object for the calculation of the pattern. However, an existing
delay in transmitting the information and physically activating
a valve needs to be considered. The average distance d of the
last observation point to the separation is calculated by

d = θvy , (3)

where vy denotes the average velocity in transport direction. In
the following scenarios, k is set to 2.5, which approximately
yields 26.9ms for θ and was determined empirically. Both for
wooden plates and lentils, this yields d ≈ 47mm and hence a
greater distance than the line-scan camera setup, which leads
to a potential disadvantage. The distance between perception
and separation together with the average velocity in transport
direction can also be used to configure the delay for the line-
scan camera system. For both products, dividing the distance
by the mean velocity yields a delay of approximately 19ms.
However, an additional activation delay of the valves needs to
be considered. Although vendors supply corresponding delay
times, those are typically determined under very stable and ideal
conditions, for instance regarding temperature, pressure, and
power supply [50]. Therefore, the trigger delay was determined
empirically for the system at hand and was found to be around
3ms. Hence, the delay configured is 16ms.

Besides these separation related parameters, the angle of the
chute has a large impact on transportation characteristics. For
the experiments presented in this paper, the chute was mounted
with an angle of 54◦. This angle was found empirically to
yield a good transportation of the products.

D. Definition of Sorting Efficiency
We adapt the definition of sorting efficiency from [41], [42]

which is formulated as

Separation efficiency (SE) % := Rd −Rc , (4)

where Rd is the ratio of objects to be rejected and hence to
be deflected that are located in the reject bin (true positive)
in percent and Rc is the ratio of objects to be accepted that
are also located in the reject bin (false positive) after the
sorting process and hence were co-deflected in percent. In our
definition, positive describes the test result for residues. The
development of the key figure SE has recently been discussed
in [51]. Obviously, in order to determine Rd and Rc, the
fraction of objects belonging to the accept and reject class
needs to be determined per bin. In the course of this study,
we re-apply the two separate bins after the sorting process on
the sorting system and use the image processing algorithms
to count the number of objects per class in the stream. The
material is not separated again.

The outcome of the sorting process is not deterministic
and is exposed to stochastic fluctuations. Various factors can
impact the sorting efficiency even when keeping the parameters
static. For instance, the material mixing is not identical when
performing several runs, the mass flow can slightly vary, and so
on. Such differences can also influence the proximity between
objects, which is known to have an impact on the sorting

TABLE I
DETAILED RESULTS FOR THE SORTING EXPERIMENTS CONDUCTED.

Product Deflection System Rd Rc SE ∆SEpattern

Plates
small Line-scan 73.38 0.23 73.15 11.02Tracking 84.53 0.36 84.17

large Line-scan 86.00 1.20 84.80 1.98Tracking 88.29 1.51 86.78

Lentils
small Line-scan 54.74 0.76 53.98 20.19Tracking 74.40 0.23 74.17

large Line-scan 72.01 1.19 70.82 7.11Tracking 78.87 0.94 77.93

efficiency [41]. Therefore, every experiment was repeated 20
times and statistics were calculated.

IV. EXPERIMENTAL RESULTS

Sorting results for wooden plates and lentils are illustrated
in Fig. 10 and Fig. 11, respectively, and provided quantitatively
in Table I. Regarding the discussion of results, it is emphasized
that we are less interested in the absolute sorting efficiency
but rather in a relative view, comparing the two system types.

Results for wooden plates using the small deflection pattern
clearly reveal the disadvantage of using a static assumption
regarding the separation delay when dealing with scenarios
with high deviations in velocity. This disadvantage is clearly
reflected in the performance of the line-scan camera system,
see Fig. 10(a). The tracking system achieves considerably
higher sorting performance in this case, quantitatively by over
11 percentage points in average. This is due to a better outcome
in Rd. Results with respect to Rc are almost equal, see Table I.
Enlarging the deflection pattern increases Rd for both system
types, whereas the improvement is greater for the line-scan
camera system, see Fig. 10(b). In average, Rd is increased by
almost 12 percentage points for the line-scan camera based
system and almost 3 percentage points for the tracking approach.
The tracking system still achieves a higher sorting efficiency,
however, the difference drops to just over 2 percentage points
in average. Hence, the performances of the systems are getting
closer to one another. However, this comes at the cost of higher
energy consumption due to the increased usage of compressed
air. For both system types, there exist experiments for which
Rd > 90% can be reported. Yet it also holds true that Rc is
increased in this case.

Experiments carried out with lentils yield similar results. Yet,
the difference in sorting efficiency is even bigger when using
small deflection patterns, see Fig. 11(a), namely approximately
20 percentage points in average. The difference is again
mainly due to superior results of the tracking system in Rd.
Employing large deflection patterns leads to convergence of the
system’s performances as has been the case with wooden plates,
see Fig. 11(b). Yet, the difference in mean sorting efficiency
still lies around 7 percentage points in this case. In general,
it appears that lentils are a harder sorting task than wooden
plates. We do not elaborate further on this assumption but refer
to the work presented in [49], which suggests that the mere
smaller size of the objects may increase difficulty, as well as
to the higher diversity in shape.
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Fig. 10. Sorting results for wooden plates. The markers denote the results of the individual experiments and the black horizontal bar the mean.
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Fig. 11. Sorting results for lentils. The markers denote the results of the individual experiments and the black horizontal bar the mean.

The distributions of the markers in Fig. 10 and Fig. 11
underline the previous statement that sorting results may vary
from batch to batch. However, by repeating each experiment
20 times and taking the average, our results are stable enough
to conclude that the sorting approach including an area-
scan camera and tracking outperforms the conventional setup
including a line-scan camera in each scenario. The increase in
sorting efficiency is particularly high when working with small
deflection patterns. This is of no surprise since large deflection
patterns are a well-established measure taken to compensate
imperfect flow control. In addition to the increased use of
compressed air, it can also be observed from the results that
enlarging the deflection pattern has a negative impact on Rc

as has been claimed before.

V. CONCLUSION

In this paper, we proposed an advanced image processing
approach for decreasing the error in physical separation in
sensor-based sorting. Our method enables reliable deflection of
objects even at non-uniform velocities of individual objects. For
this purpose, we proposed equipping a sorting system with an
area-scan sensor and a predictive real-time multiobject tracking

system. Based on experimentation with two different sorting
tasks, we have shown that the proposed system outperforms
a state-of-the-art reference system in every configuration
under consideration. Sorting efficiency was increased by at
least 2 percentage points and at most 20 percentage points.
The increased efficiency is a result of the higher deflection
accuracy. It was further shown that the proposed approach
allows for employing small deflection patterns while retaining
the sorting efficiency, which in turn lowers the required
amount of compressed air and hence improves profitability
and environmental friendliness.

The presented study revealed the necessity for accelerating
computations of our advanced image processing system in
order to achieve higher throughput for practical applications.
Especially in case of the desired transfer from our experimental
sorting system to an industrial sized system, real-time related
issues might become more challenging since more objects
need to be tracked, classified and separated simultaneously.
Furthermore, our system not only provides information regard-
ing where an object is moving but also how it is moving. We
consider utilizing motion information for the identification of
the materials in real sorting scenarios as proposed in [39], [40]
to be a promising research direction.
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