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Verbesserung der optischen Schüttgutsortierung mittels verfeinerter Bewegungsmodelle

Abstract: Visual properties are powerful features to re-
liably classify bulk materials, thereby allowing to detect
defect or low quality particles. Optical belt sorters are
an established technology to sort based on these proper-
ties, but they suffer from delays between the simultaneous
classification and localization step and the subsequent
separation step. Therefore, accurate models to predict the
particles’ motions are a necessity to bridge this gap. In
this paper, we explicate our concept to use sophisticated
simulations to derive accurate models and optimize the
flow of bulk solids via adjustments of the sorter design.
This allows us to improve overall sorting accuracy and
cost efficiency. Lastly, initial results are presented.
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Zusammenfassung: Visuelle Eigenschaften sind mächtige
Merkmale zur Klassifikation von Schüttgütern, auf Basis
derer man defekte oder unbrauchbare Teilchen erkennen
kann. Die Verwendung optischer Bandsortieranlagen ist
eine etablierte Technik zur Sortierung basierend auf die-
sen Merkmalen. Derartige Sortierer leiden jedoch unter
Verzögerungen zwischen der gleichzeitigen Klassifikation
und Lokalisierung und der darauffolgenden Separation.
Dadurch entsteht die Notwendigkeit für akkurate Modelle
der Teilchenbewegung, mittels derer diese Lücke über-
brückt werden kann. In dieser Veröffentlichung stellen wir
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unser Konzept vor, mittels hochentwickelter Simulatio-
nen genaue Modelle herzuleiten und den Teilchenstrom
durch Optimierungen im Design des Sortierers zu verbes-
sern. Dies ermöglicht die Verbesserung der Sortiergüte
und Kosteneffizienz. Abschließend präsentieren wir erste
Ergebnisse.

Schlagwörter: Diskrete Elemente Methode, Multi-Object
Tracking, Numerische Strömungsmechanik, Optische Sor-
tierung

1 Introduction
Approximately 10% of all energy produced annually is
spent on transport and handling of bulk material [1],
making efficiency improvements highly valuable to the
modern world. While some bulk materials can be sorted
based on mechanical characteristics such as shape, size,
and density, others can mainly be distinguished according
to visual properties. An example for the latter are glass
splinters, which are typically sorted based on their color.
For these applications, sorting systems combining optical
sensors with image processing technology and a subsequent
separation step present a convenient solution. Optical
sorting systems are often characterized by the applied
transport system, with belt sorters and slide sorters being
the most representative ones.

While non-optical sorters such as sieves and magnetic
separators exploit differences in the physical character-
istics of the bulk solids and combine classification and
separation in one step, these tasks have to be regarded
separately in optical sorters. This leads to the following
key challenge. Due to delays emerging at various com-
ponents of the system, a small, yet not negligible time
gap (typically in the order of milliseconds) passes between
classification and separation. The same applies to the
localization, which is usually combined with the classifi-
cation. Consequently, it is necessary to precisely predict
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when and where each particle arrives at the separation
mechanism. This prediction necessitates models for the
particles’ motions. Until now, optical sorters have largely
worked without explicitly modeling the particles’ motion
behavior. However, they have always implicitly relied on
the very simple and often inaccurate assumption that all
particles move at a predefined speed in the main transport
direction.

In this paper, we present a novel interdisciplinary con-
cept to tackle this deficiency. We illustrate concepts that
allow us to make explicit use of sophisticated simulations
and explicate a promising approach to achieve accurate
motion models, which can be integrated into industrial
optical sorters in the near future.

2 State-of-the-art Optical Belt
Sorters

The basic components of a state-of-the-art optical belt
sorter are illustrated in Fig. 1 and a detailed overview of
the applied processing pipeline is provided in [2]. Parti-
cles of the bulk material are transported on a belt that
serves the purpose of adapting the particles’ velocities to
its own speed and reducing movements perpendicular to
the transport direction, which is crucial for current belt
sorters. After leaving the belt, the particles fall off along
a parabolic flight path. During their flight, they pass the
so-called inspection line illuminated appropriately to the
task at hand. At this point, particles are recorded with
a line scan camera and the image data is processed with
the goal of classifying and localizing each particle.

The classification result serves as the basis for the
actual separation. Depending on the classification result,
compressed air nozzles lined up in an array parallel to
the inspection line are selectively activated to alter the
flight path of certain particles. Due to differing amounts of
particles and object properties, the time required for image
processing varies as illustrated in Fig. 2. By activating
the nozzles at a fixed delay after the particle passes the
inspection line, current systems implicitly assume that all
particles move at the same speed in the transport direction.
The nozzle that is in line with the observed position is
then selected for activation. Thus, it is assumed that
the velocity component perpendicular to the transport
direction is zero and that the velocity component in the
transport direction is static and implicitly known.

Current optical belt sorters use imprecisely focused
streams of air and activate the individual nozzles longer
than necessary to account for the uncertainty in the parti-
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Fig. 1. Schematic view of an optical belt sorter.
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Fig. 2. Delays occurring between inspection and actual separation.
For cases with even longer processing time, the system will not be
in time to perform the separation.

cle’s movement. Clearly, this comes at the cost of hitting
additional particles located close to the intended particle,
hence potentially producing high amounts of so-called
by-catch, i.e., particles that are mistakenly blown out. To
calculate precise control inputs for the separation mech-
anism, accurate models are needed as well as a better
understanding of the particle–particle interaction, espe-
cially in cases of higher throughput of bulk solids.

3 Models
The easiest way to calculate the temporal and spatial
offset from the time and place the particles are observed
at is to assume that all particles have an identical and
known motion pattern. This is done implicitly in current
optical belt sorters explained in Sec. 2. However, this is
clearly a rough approximation. Especially bulk materials
that do not typically follow such a constant, linear motion
violate this assumption to such an extent that sorting
becomes infeasible using current optical belt sorters.
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(b) Error of the implicit
model compared with the
error of a constant velocity
approach.

Fig. 3. Illustrations of the different phases of the tracking and of
the occurring errors depending on the model used. For the old
implicit model, we assume the inspection line to be at the blue
line that separates the prediction and the tracking phase.

3.1 Predictive Tracking for Optical Belt
Sorters

To alleviate this weakness, we have enhanced a prototype
of an optical belt sorter by adding an area scan camera.
We refer to this extension that allows us to make full use
of the additional information obtained by the area scan
camera as TrackSort [3, 4]. While the delays explained in
Sec. 2 are not reduced by the use of an area scan camera,
we gain a significant advantage by observing each particle
at multiple time steps.

The tracking process to make use of the multiple
observations can be divided into three phases that we can
visualize on a top view as sketched in Fig. 3a. During
the tracking phase, we expect to obtain measurements of
all particles and can update our knowledge about each
particle’s position and velocity accordingly. The prediction
phase is necessary due to the delays explained in Sec. 2.
When a particle enters the prediction phase, the decision
about whether to active the corresponding nozzle must
have already been made. Therefore, we cannot rely on
measurements during the prediction phase and have to
use our acquired knowledge about the particle’s motion to
predict its movement. The multiple observations obtained
during the tracking phase can not only help us make
accurate predictions, but also facilitate improved classifiers.

In our current prototype, we solve the measurement-
to-track association problem by maximizing the global
association likelihood [5, Ch. 10.3] and use one Kalman
filter per track with a constant velocity model to estimate
each particle’s position and velocity. The uncertainty of

the system model was derived from empirical observations
and the measurement uncertainty was obtained by ana-
lyzing the noise on recordings of static particles. Since
visually matching particles from one time step to the next
is computationally infeasible and often even theoretically
impossible, we treat the measurements obtained by the
area scan camera as unlabeled measurements. Problems
of this kind are referred to as multitarget tracking prob-
lems [6, 5] without labels in literature. While multitarget
tracking is challenging and still an active field of research,
a constant velocity model that extrapolates the particle’s
position using the observed velocity (also including the ve-
locity component perpendicular to the transport direction)
suits the application well enough to allow us to use simple
solutions. As sketched in Fig. 3b, the constant velocity
model is an improvement compared with the old implicit
model but still offers room for improvement.

3.2 Improving Models

Further optimization of the motion models used for the
tracking is key to optimizing the system’s performance.
First, the prediction accuracy as the critical quality cri-
terion strongly relies on an accurate model. Second, the
measurement-to-track assignment of the multitarget track-
ing depends on the accuracy of the prediction of the par-
ticles’ motions from one frame to the next.

For the latter, an accurate model can not only increase
the probability of the assignment being correct, it also al-
lows for significantly improving the run time performance
of the system. The measurement-to-track assignment is
computationally expensive and can even take up more
CPU time than the image processing task if naïve algo-
rithms are used. Using better models, we can refine a step
called gating [7, Ch. 4] in which the problem is simplified
and thus made faster to solve at the cost of a negligible
risk of false assignments. Thus, even models that are com-
putationally more costly can have a net benefit on the run
time performance of the system, allowing us to track more
particles concurrently and facilitate the use of cameras
with higher frame rates.

To derive improved models for the tracking, our first
aim is to model the entire system as accurately as possible
using realistic, three-dimensional physical models consid-
ering particle–particle as well as particle–wall interactions.
Such simulation approaches could be the Discrete Ele-
ment Method (DEM) coupled with Computational Fluid
Dynamics (CFD) as introduced in the next section. By
having an accurate simulation at our disposal, we can
first improve our constant velocity model. For example,
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using a simulation with a high resolution that respects
all dimensions, we can accurately derive the system un-
certainty without the need for extensive experiments. In
the second step, we aim to derive new simplified models.
These models may vary for different bulk materials. We
can safely rely on the classification decision because if the
classification is incorrect, using an incorrect prediction
model will be unlikely to do any harm. If an incorrect
classification results in targeting one particle using the
nozzles although the correct decision is to not alter its
flight path, then an incorrect prediction will even give it a
slightly better chance to escape the attempted separation.
If the decision not to target the particle with the separa-
tion mechanism is made, then the predicted position will
be discarded and thus will not induce any effect on the
sorting performance.

3.3 Simulation With a Coupled
DEM–CFD Approach

In order to improve the motion models for the tracking and
to get a more detailed understanding of the bulk solid’s
behavior in optical sorters as well as to potentially improve
the design of optical sorters, particle-based simulation
approaches like the Discrete Element Method (DEM) are
applicable. The DEM was first introduced by Cundall
and Strack in 1979 [8]. It allows the detailed analysis
of particle–particle and particle–wall interactions. The
translational and rotational motion of each particle, also
allowing non-spherical shapes, is calculated using Newton’s
and Euler’s equations of motion and can be written as

mi
d2~xi

dt2
= ~F c

i + ~F pf
i + ~F g

i , (1)

Îi
d ~Wi

dt
+ ~Wi × (Îi

~Wi) = Λ−1
i

~Mi , (2)

where mi is the particle mass, d2~xi/dt
2 the particle accel-

eration, ~F c
i the contact force, ~F g

i the gravitational force,
and ~F pf

i the particle–fluid force, which is required to
model the particle–fluid interaction at the particle ejec-
tion stage of the sorter. The second equation gives the
angular acceleration d ~Wi/dt as a function of the angular
velocity ~Wi, the external moment resulting out of contact
of particle/fluid forces ~Mi, the inertia tensor along the
principal axis Îi, and the rotation matrix converting a
vector from the inertial to the body fixed frame Λ−1

i . Infor-
mation regarding the time-resolved position, velocity, and
orientation of every particle enables the investigation of
attainable selectivity and throughput of the optical sorter.

The data can further be used to optimize the employed
particle tracking by deriving improved motion models.

To model the particle ejection by bursts of compressed
air, the DEM is coupled with Computational Fluid Dy-
namics (CFD). The fluid phase is described by solving the
volume averaged Navier–Stokes equations

∂(εfρf )
∂t

+5(εfρf~uf ) = 0 , (3)

∂(εfρf~uf )
∂t

+5(εfρf~uf~uf ) =− εf 5 p+5(εf τ)

+ εfρf~g + ~fint (4)

and thus, we do not resolve the flow around individual
particles. Here, ~uf is the physical fluid velocity, ρf is the
density, p is the pressure, ~fint is the volumetric parti-
cle/fluid interaction momentum source employed in each
CFD cell, εf is the local fluid porosity, and τ is the fluid
viscous stress tensor. Previous studies, like one recently
conducted by Fitzpatrick et al. [9], show that this ap-
proach can correctly describe the complex particle–fluid
interaction.

The optical belt sorter used for experimental investi-
gations modeled within the DEM framework is shown in
Fig. 4a. For initial experiments and validation purposes,
the system is first run in batch operation and without
particle ejection and consequently sorting. During first
investigations, a base case is defined and different oper-
ating parameters such as particle throughput and shape,
belt velocity and length as well as the amplitude of the
vibrating feeder are altered in both experiments and sim-
ulations. Analysis and comparison of particle velocities,
orientations, and trajectories validate the simulation and
provide first insights into the general system behavior.
Initially, different model shapes and their corresponding
behaviors are examined (Fig. 4b-d) and it is planned to
numerically model and investigate real bulk solids such as
coffee beans, rice, and glass shards in the near future.

Based on the obtained information regarding the par-
ticle behavior, the improved particle tracking, and the
insights into the particle ejection process, we aim to de-
velop a numerical model of the entire new optical sorter
that includes the sorting decisions and sorting process.
This model will allow the detailed analysis of every stage
of the sorting process and will help to gain insights which
would be difficult or expensive to obtain experimentally.
In short, the model can be used as a versatile design tool
and for further process optimization.
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Fig. 4. DEM simulation of the optical belt sorter (a) and different particle shapes (b-d) employed in experiments and simulations. The
colors of particles on the belt indicate their velocities in the transport direction.

4 Initial Results
While we are still at an early phase of the project, we have
laid the basic building blocks and already attained two
objectives that we explain in more detail in this section.
One objective was to build a tool to test the tracking
approach using a simple model on recorded image data.
The other task was to develop a first DEM model for initial
simulations to confirm the suitability of this approach.

4.1 Tracking Using a Constant Velocity
Model

For our first experiments, a simple tracking algorithm
was implemented in rapid prototyping programming lan-
guages. Using common image processing techniques such
as connected component analysis, we separate the parti-
cles of the bulk material from the background. Following
that, we calculate certain geometric features, for instance
their approximate centroids, which are passed on to the
multitarget tracking. In each data set, only particles of a
single bulk material were used and our goal was merely
to test the feasibility of the tracking and measure first
improvements by the constant velocity model.

As shown in Fig. 5, our assignments are highly ac-
curate, implying that we are able to predict the next
measurement with high precision. This suggests that the
utilized multitarget tracking algorithm is well suited to
the problem at hand. Nonetheless, we are planing on eval-

uating other multitarget tracking algorithms such as the
JPDAF [10] by using very fast approximations [11, 12]
and investigating more expensive algorithms [13, 14] for
low numbers of particles. A more in-depth analysis of our
results using the constant velocity model is given in [3].

4.2 DEM Simulations

Initial simulations with the DEM model described in
Sec. 3.3 offer first insights into particle and system behav-
ior. At first, only the vibrating feeder, slide, and conveyor
belt are considered. The obtained information also allows
a detailed comparison with corresponding experiments.
As the simulations are initially conducted in batch op-
eration, knowledge of the particle mass flow within the
sorter is of great importance. Fig. 6 shows the particle
mass flow in the simulation measured at the beginning
of the conveyor belt. The simulation is performed with
50 g of 5 mm wood spheres (Fig. 4b) while the vibrating
feeder is set to an amplitude of 0.5 mm at 50 Hz and the
conveyor belt moves at a velocity of 1.5 m/s. The graph
in Fig. 6 shows that the particle mass flow between the 5
and 9 second mark is nearly constant at a value around
0.008 kg/s. Hence, the mass flow in this time frame can be
regarded as stationary, which enables a system analysis
neglecting time dependencies.

A screenshot of the conveyor belt, taken from the
simulation, can be seen in Fig. 7. The vectors attached to
the particles show the velocity and the direction of the
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Fig. 5. The result of our prototypical tracking algorithm is visualized on an actual frame of a recorded dataset. The motion of each
particle is visualized as the path (red) of the eight most recent position estimates (blue). That all motion paths are plausible implies
that the measurement-to-track assignments are correct in this example.

Fig. 6. Particle mass flow within the optical sorter obtained at
the beginning of the conveyor belt.

movement while the particles’ colors indicate their angu-
lar velocities. The figure shows that most of the spheres
move parallel to the belt without any cross movements.
Some exceptions are highlighted in the box on the right.
These particles also have high angular velocities, originat-
ing from particle–particle and particle–wall interactions.
Cross movements and particle interactions are expected to
drastically increase when applying higher mass flows and
when sorting bulk solids with higher tendencies to move
perpendicular to the transport direction. The analysis
of these and other system parameters form the basis of
further investigations and tracking model improvements.

5 Conclusions
Using an area scan camera to observe each particle at
multiple time steps has great potential for improving the
separation using improved predictions of the particles’
positions. To make optimal use of the additional data
obtained and optimize run time efficiency, accurate models
are essential.

Not only will the DEM–CFD approach help us derive
accurate models, it will also allow us to optimize every
single step of the sorting process. By being able to simu-
late the whole process accurately, we can not only derive
models, but also ensure that mechanical and structural
parts are built in a way that ensures that the particles’
motions adhere to the derived models.

One goal of our research is to improve the probability
of hitting targeted particles, reducing by-catch, and saving
energy in the separation process by reducing the amount
of compressed air used. The other objective is to optimize
the optical belt sorter regarding throughput, necessary
space, and cost while maintaining a sorting quality that
suits the needs of the users of optical belt sorters.
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Fig. 7. DEM simulation with 5 mm wood spheres showing the top view of the conveyor belt. The vectors indicate the direction of the
movement and the particles’ colors describe their angular velocities.
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