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Abstract—In multi-object estimation, the traditional minimum
mean squared error (MMSE) objective is unsuitable: a simple per-
mutation of object identities can turn a very good estimate into
what is apparently a very bad one. Fortunately, a criterion tailored
to sets—minimization of the mean optimal sub-pattern assignment
(MMOSPA)—has recently evolved. Aside from special cases, exact
MMOSPA estimates have seemed difficult to compute. But in this
work we present the first exact polynomial-time algorithms for cal-
culating the MMOSPA estimate for probability densities that are
represented by particles. The key insight is that the MMOSPA es-
timate can be found by means of enumerating the cells of a hyper-
plane arrangement, which is a traditional problem from computa-
tional geometry. Although the runtime complexity is still high for
the general case, efficient algorithms are obtained for two special
cases, i.e., (i) two targets with arbitrary state dimensions and (ii)
an arbitrary number of one-dimensional targets.

Index Terms—Target tracking, data association, OSPA distance,
Wasserstein distance, MMOSPA estimation.

I. INTRODUCTION

N multi-object estimation cases—these could be “tracking”

problems—measurement origin uncertainty necessarily
gives rise to uncertainty in target labeling. For example, con-
sider two targets in one-dimensional space as in Fig. 1 that
move according to the trajectory depicted in Fig. 2(a). Noisy
measurements of the target locations are available. However,
it is unknown which measurement comes from which target.
A consequence of the unknown measurement origin is that
the likelihood function is symmetric in the target states as
shown Fig. 3(a). A standard approach to tracking the targets
is to employ a particle filter [2], [7], [20], [21], [25], [29], i.e.,
the posterior density is approximated with particles. When
the targets are still separated in the beginning, the posterior
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Fig. 1. Two objects at time k& with one-dimensional locations z1 (k) and z2 (k)
from which two measurements z; (k) and z2 (k) are received (with unknown
measurement origin).
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Fig. 2. Motivating example: Tracking two one-dimensional targets with a par-
ticle filter. (a) Two targets in one-dimensional space with a straight-line motion.
(b) Point estimates based on a particle filter for an example run. The MMSE
estimate suffers from coalescence once targets crossed.

joint density for the target locations might look like the one
in Fig. 3(b): here each particle comprises the two (scalar)
coordinates of both targets, and since the targets are initially
well separated this figure has all particles with target 1 on the
right and target 2 on the left. After the targets have been close,
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Fig. 3. Motivating example: Likelihood p(z1(k), z2(k)|z1(k), 22 (k)) and posterior joint density of the locations of the two targets p(z1(k), z2(k)| Z(k)) for
different time steps k, where Z(k) denotes all measurements up to time k. Note, as MMOSPA ignores labels, each permutation of the MMOSPA estimate is also a
MMOSPA estimate. For example, in (b) are two (equivalent) MMOSPA estimates [—0.08, 0.08]” and [0.08, —0.08]7". (a) Likelihood function: ¥ = 1. (b) Joint

density: £ = 1. (c) Joint density: k = 10. (d) Joint density: £ = 20.

the true posterior becomes multimodal due to the lost labeling
information, see Fig. 3(c). Apparently this is irrecoverable (see
Fig. 3(d)), since now approximately half the particles have
target 1 on the left and target 2 on the right; and half the other
way. The resulting MMSE estimate is in the middle—and quite
useless.

This misbehavior leads to the coalescence of the estimated
tracks [8], [9] as illustrated in Fig. 2(b). As a remedy, one could
use a maximum a-posteriori (MAP) estimator. However, the
MAP estimator must choose between modes (and, hence, ig-
nore information about the other mode), which can lead to un-
desired jittering [10]. An alternative is to eschew any pretense
of estimating the (labeled) locations of target 1 and target 2, and
simply to ask: “Where are there objects?”” To seek an MMSE
estimate makes no sense in this case, since MSE requires la-
bels. However, we consider the path to the MMSE estimate:
As will be soon discussed, there has recently arisen a label-free
metric, the optimal sub-pattern assignment (OSPA) metric [26],
upon which the criterion mean OSPA (MOSPA) and optimal
minimum MOSPA (MMOSPA) approach can be built [23]. The
corresponding MMOSPA estimates for the joint densities in the
particle filter example are illustrated in Fig. 3. It can be seen that
the MMOSPA estimate always captures the locations of the tar-
gets precisely. This is also reflected in the estimated trajectory
in Fig. 2(b), which does not suffer from coalescence.

During the last years, MMOSPA estimation found plenty of
applications. Besides track extraction and display [10], approx-
imations in multi-target tracking algorithms can be performed
with an eye to OSPA, as in the Set JPDAF [28], the Set MHT
[10], and several improved multi-object particle filters [2], [7],
[20], [21]. A further recent application is direction-of-arrival es-
timation of signals from multiple targets impinging on an an-
tenna array [4], [12], [13].

The MMSE estimate has an explicit expression, the mean
of the posterior; MMOSPA estimation is more complex. Prior
work proposes an iterative algorithm [23] to get an approximate
solution. An explicit expression was derived for the two-ob-
ject Gaussian case; and a decent approximation is available for
Gaussian mixtures. In [10], [12], [14], a greedy suboptimal al-
gorithm for probability densities represented with particles was
introduced. Furthermore, the problem was formulated as an S-D
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Fig. 4. Overview: Runtime complexity of the exact algorithms depending on
the number of particles N,,, number of objects n, and state dimension d. The
efficient cases are obtained forn = 2 and d = 1.

assignment problem in [12] and continuous quadratic semi-as-
signment formulations were given in [12], [15]. A closed-form
approximation of the MOSPA cost function for Gaussian mix-
tures was presented in [16].

For a fixed number of targets, it has been shown in [5] that the
MMOSPA estimate for probability densities represented with
particles is equivalent to the Wasserstein barycenter [1], [17],
[24] for point clouds. Hence, for example, the sliced Wasserstein
distance proposed in [24] could be used to get an approximate
solution. Explicit solutions are available only for the scalar case
[12], [24] and for two particles with arbitrary target number [6].

A. Contribution

Suppose one has a particle representation of a multi-object
posterior density at a specific time, e.g., Fig. 3(c), and could
evaluate MOSPA of some estimate: what should one do with
them to find the best estimate, the MMOSPA? In this article,
we explore exact solutions for cases in which probability den-
sities are represented by particles, see the overview in Fig. 4.
We present the first exact algorithm for an arbitrary number
of targets with a runtime complexity that is polynomial in the
number of particles. The runtime complexity for many targets
might still be to high for practical applications. However, we
further consider two important special cases, i.e., the two-target



case and the one-dimensional case, in which further optimiza-
tions are possible in order to obtain efficient real-time capable
algorithms.

This article extends and revises the conference paper [3],
where exact algorithms for the one-dimensional case and the
two-target case were discussed.

B. Overview

In the next section, we give an introduction to MMOSPA esti-
mation including the final optimization problem for probability
distributions represented by particles. Section III summarizes
basic results from computational geometry about hyperplane
arrangements, which are essential for deriving the exact al-
gorithms. Subsequently, in Section IV, we present the exact
MMOSPA algorithm for the general case, i.e., arbitrary target
number and target state dimension. Section V considers the
two-target case in which further runtime optimizations are
possible. Section VI treats the special case of an arbitrary
number of one-dimensional objects and shows that—in this
case—the MMOSPA estimate can be calculated efficiently by
means of order statistics. We give an extensive evaluation for
the exact algorithm for two targets in Section VII. This article
is concluded in Section VIIIL.

II. PROBLEM DESCRIPTION
We consider multi-object estimation problems in which the
state of multiple objects is modeled as a random vector

z(k) = [z (k), ...z} (k)]",

L

(1

where z;(k) € R? denotes the state vector of target i (with
1 < ¢ < n)and k is the time index.

Recursive Bayesian tracking algorithms compute a proba-
bility density function for z(k) conditioned on all available
measurements Z (k)

plz(k)| Z(k)). (2)

Due to the nonlinearity of the data association problem, usu-
ally only an approximation of (2) is available. In this work, we
focus on particle filters [25], [29], i.e., the probability density
(2) is represented with N, particles

plz(k)| Z2(k) = 32 wi(k) - 6(z(k) — 2D (K)),| )

where 2(9)(k) denotes the i-th particle with weight w;(k) and
() is the Dirac delta function.

Remark 1: Inthe remainder of this work, we focus on a single
point in time k&, so that we omit the time index, i.e., instead of
x1 (k) we will write 2.

In general, a point estimate minimizes a specific risk function
such as the mean square error (MSE), which yields the minimum
mean square error (MMSE) estimate

iMMSE = argminE {Hi - EHQ ‘ Z} :
2e

It is well-known that the MMSE estimate is given by the condi-
tional mean 2MMS¥ = B{z| Z}.
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Fig. 5. OSPA distance for two two-dimensional targets z = [zT, 23"
andy = [y7,yT]7: There are two possible permutations 71 and 2, i.e.,

OSPA (z, y)? = tmin{|lz — Pr, (9)I1%, |2 — Pry (3)]1*}- (a) Permutation
1. (b) Permutation 7a.

As motivated in the introduction, the MMSE estimate may
be a poor choice for multi-object estimation since its implicit
constraint of object labeling. As an alternative, we abandon the
target labels by using a different risk function than the MSE,
namely the mean optimal sub-pattern assignment (MOSPA)
[23], [28]. This risk function is based on the OSPA metric [26],
which is a widely-used measure for evaluating multi-target
tracking algorithms. In this work, we only need the special case
of a known number of targets, see Fig. 5.

Definition 1 (OSPA): The optimal sub-pattern assignment
(OSPA4) [26] distance between two vectors z = [z ,...,z1]%
andy = [y7,. .., QZ]T, which consist of n target state vectors
of dimension d, is defined as

1
OSPA 2= = mi - P.(y)|?, 4
(z,y)" = — min [lz — Pr(y)] “
where II,, denotes all permutations of the set {1,...,n}, and
Py (y) permutes the single target states in y according to , i.e.,
Pﬂ(g) = [gzs(l), - ,g:(n)]T.

For example, for two one-dimensional targets (n = 2,d =
1), we have the squared error SE([1020]7,[1911]7) = 162,
OSPA([1020]7,[1911]7)% = 2.

Remark 2: We will use the notation P, (y) := P, (y) for
the optimal reordered single target states in y with respect to z
(in order to emphasize that 7,y depends on x). Then, we can
equivalently write for (4)

OSPA(z,y)* = ~llz — Pe(y) 5)

Based on the OSPA metric, we introduce the MMOSPA esti-
mator [23].

Definition 2 (MMOSPA): The minimum mean op-
timal sub-pattern assignment (MMOSPA) [23] estimate of
z = [zF,...,2T]7 based on the posterior probability density
p(z| Z) is defined as the point estimate that minimizes the mean
OSPA (MOSPA) distance, i.e.,

|&>

MMOSPA . — arg min E{OSPA(z,z)?| Zlpzz)-  (6)

:i_‘ER"d

There are n! MMOSPA estimates, because each permutation
of $MMOSPA

is also a MMOSPA estimate. Due to the properties
of the expectation, (6) can be written as [23]
FMMOSPA = B{Pomosea (z) | 2}

(7



Fig. 6. Central arrangements of hyperplanes in 2D with three hyperplanes (a)
and five hyperplanes (b). In 2D, the number of cells increases linearly with the
number of hyperplanes. A 3D hyperplane arrangement is shown in (c). In 3D,
the number of cells grows quadratically with the number of hyperplanes.

Note that 2MMOSPA is unknown in the right hand-side of (7),
which is why MMOSPA is complicated to compute.

For densities represented with particles as (3), the MMOSPA
is given by [11]

NP
FMMOSPA — org minz w; - OSPA (&, z")? ®)
(i_‘GRnd i1
N, 1
:argminZwi . —H@fPﬂm (g(i))\|2, 9)
@ERHd i—1 n opt
where w(()'gt is the optimal permutation of the i-th particle with

respect to Z. Using the notation of (5), we obtain

Ny .
AMMOSPA — aremin 3 w; - L)z — Py (z™)]?,
i_,eR“d =1 -

(10)

which is the final formulation of the optimization problem that
we will solve in this article. According to (7), the MMOSPA
estimate can also be written as

2

) w; - PiMMOSPA (i(l)) .

FMMOSPA __

(11)

i
=

i

III. BRIEF INTRODUCTION TO HYPERPLANE ARRANGEMENTS

This section summarizes some basic results from computa-
tional geometry about hyperplane arrangements that are rele-
vant for this work (see for example [18], [19], [22], [27]).

A hyperplane arrangement in d-dimensional space is given
by a set

A={h;|i=1,...,N}
consisting of N hyperplanes

hi :={a € R*|b]a = ¢}, (12)
where b, € R? and ¢; € R. If all hyperplanes pass through
the origin, i.e., ¢; = 0 forall i = 1,..., N, the arrangement is
called central (see Fig. 6). A d-dimensional central hyperplane

arrangement is equivalent to a d — 1-dimensional non-central
one, see [27].

Each hyperplane partitions R into three sets, i.e., the hyper-
plane A;, and the two half-spaces

hj:{geRd’\QngfciZO},and

h; = {geRd\Q;TFQ—ci §0}.
An arrangement is composed of d-dimensional regions we shall
call cells. Each point a € R? can be labeled with a sign vector
v(a) € {—,0,+}", whose i-th component is

— ifaeh;
+ iface hj

Hence, each cell of an arrangement can be uniquely represented
by a sign vector s € {—,+}"». A d-dimensional hyperplane
arrangement with NV hyperplanes has at most [22]

d

> <d]171> € O(N%

=0

(14)

cells. This property will become essential later as it says that
the number of cells grows polynomially in the number of hy-
perplanes.

Algorithms for enumerating the cells of a d-dimensional hy-
perplane arrangement are described in [18], [19], [22], [27].
There are algorithms that are optimal in the sense that they enu-
merate each cell exactly once with a worst-case runtime O(N9).
For higher dimensions, the optimal algorithms are rather techni-
cally complex. However, an extremely simple general algorithm
that is not time-optimal [22] is shown in Algorithm 1. First, all
vertices in the arrangement are calculated. Second, the cells ad-
jacent to the vertices are enumerated. The obtained runtime is
O(N1) In the following, we focus on non-degenerate hyper-
plane arrangements, i.e., any d hyperplanes intersect in a unique
vertex and any d + 1 hyperplanes have no common points [22],
as degenerate hyperplanes are zero-probability events.

Algorithm 1: Cell enumeration of non-central hyperplane
arrangement A = {h; |t =1,..., N} according to [22]

S =1}
: for all vertices v in (), h; do
s = ()
S := & U adjacentCells(s)
end for

return S

SANNANS Sl >

IV. GENERAL POLYNOMIAL TIME ALGORITHM

In this section, we derive a polynomial-time algorithm for
computing the exact MMOSPA estimate (10).

Remark 3: A naive but inherently intractable approach is to
check all n!™¥» possible permutations of the particles in (11) and
find the permutations that yield the least MOSPA distance.

We pursue the approach to directly optimize over all & € R™
in (10). We will show that there is only a polynomial number
of possible vectors & to check. Specifically, we show that all



potential vectors can be found by enumerating the cells of a hy-
perplane arrangement, which is a well-known problem in geom-
etry and combinatorics [27]. In general, the resulting worst-case
complexity of the derived exact algorithm for d-dimensional
target states will be

O((N, - (n)*)*47), (15)

where N,, is the number of particles and »n the number of targets.
Hence, the complexity is polynomial in the number of particles
N, while it is exponential in the number of targets 7.

The first step is to consider the OSPA distance in (4): In order
to calculate the OSPA distance between two vectors z and y,
one has to consider all permutations P, (z) (with = € TI,,) of
the single target states in . The following theorem gives a sim-
plified condition to check which of two permutations 7} and 75
is “better”. The most important property of this condition is that
it is linear in y, which will later allow us to construct a hyper-
plane arrangement.

Theorem 1: For the two vectors z = [z}, ..., 27" and y =
[y7 s, y2 |, which consist of n targets with dimension d, and
two permutations 71, w2 € 1l,,, the following holds:

Ny~ P @I <~y Pr(a)? (16)
)
0<(y, Pry(z) = Pr,(z)) (17
Proof:
Ly @’ < Sy Pre))? (18)

<y o P7T2 (ﬁ)vg o Pﬂz (i» (19)

IN <= IAN <= A S A
=

—2(y, P, (2)) < —2(y, Pr,(z)) (20)

0 <Q7Pﬂ1(£) 7P7T2(£)>7 (21)

where (20) follows from (19) because for all # € II,, we have
(Pr(z), Pr(2)) = (z, 2). O

Next, we will use the above theorem to construct a hyperplane
arrangement for a particle distribution (3), which is the main
insight that leads to the polynomial-time algorithm.

Theorem 2: Suppose we are given the random vector £ =
27, ...,27]" € R™, which consists of n-dimensional smgle
target states and a corresponding posterior density (3). Then
there is a set of nd-dimensional vectors

A={ay,...,ay,} CR™ (22)
that contains a specific @ € A with
FMMOSPA Z w, P (23)

The cardinality IV, of A is bounded by a polynomial depending
on the number of particles IV, i.e.,

N, € O((N, - (n)2)4-1),

Proof:
Step 1: Hyperplane arrangement for a single particle.
Based on Theorem 1, define for each particle (*) an nd-dimen-
sional central hyperplane arrangement

A= | ) AP (24)
1<r<s<nl
that consists of w hyperplanes
Byt = {a € R™| ()" a =0}, (25)
with
b= Pr, (a7) - P, (29) (26)

forall 1 < r < s < nl. Here, 7, and 7, enumerate all possible
permutations in IT,,.

Intuitively, for a given vector a € R™, the hyperplane A"
allows to check if 7, or 7, is a “better” permutation for calcu-
lating OSPA (a, ().

Due to Theorem 1 the following holds: If ¢, and a4 are in the
same cell, i.e., v(a;) = 7v(az), then P, (@) = P, (D).
Step 2: Hyperplane arrangement for all particles.

Next, we create, based on all particles, an nd-dimensional cen-
tral hyperplane arrangement

A= 27

that consists of N, M hyperplanes. Each cell uniquely
specifies the permutat10ns of all partlcles and hence,

Suin, () = Sr, (o).

If we enumerate the NV, cells of A with Cq,...,Cy,, we can
pick a; € C;. Furthermore, we know from (14) that

Vml nd—1
N, < (1\;97"'(”'2 1)> :

which is polynomial in the number of particles IV,. O

The cells specified by the vectors (22) can also be specified
by sign vectors such as (13). In this manner, let s = y(a) be the
sign vector specifying the cell that contains a in the hyperplane
arrangement .A. Then, we denote with P,(z(*)) the permutation
that corresponds to P, (z(*).

Theorem 2 directly leads to an algorithm for calculating the
exact MMOSPA estimate: Enumerate the cells in the hyperplane
arrangement (27). For each cell, determine the corresponding
permutations in (11) and test if it minimizes the corresponding
MOSPA distance in (10). This algorithm is summarized in Al-
gorithm 2. As there are optimal algorithms for cell enumeration,
the runtime complexity is given by (15). Note that the MOSPA
distance for a cell in line 3 does not have to be computed from
scratch if the cells are enumerated in a proper order, i.e., pre-
vious cell was a neighbor.

Remark 4: The sign vectors of a central arrangement of hy-
perplanes are symmetric, i.e., s € v(R?) = —s € vy(R%).
Hence, we actually would only have to enumerate half of the

(28)

(29)



(a) (b)

Fig. 7. Optimization over directions. (a) Illustration of Theorem 3. Both vec-
tors z, —x, andy, —y,, point to the same direction, i.e., {x, — 5, y, — y,) >
0. Hence, no sw1tch1ng is performed. (b) Illustration of Theorem 4. For all
a € h; no switching of 2} " and z5 (s performed and for all @ € h; , the
target states are switched.

cells, because the resulting MMOSPA estimates are the same
for s and —s. For the sake of simplicity, this property is not ex-
ploited here.

Algorithm 2: MMOSPA estimate for . d-dimensional
targets with joint density p(z| Z) = Y07, w; - 5(z —2®)

1: Create the hyperplane arrangement A as defined by
27).
2: S = set of sign vectors specifying the cells A.
3 Sypin = argmin,e s{MOSPA(p(z|2), 2%)},
where 22 1= V7w, P (2(9)
4: return 3Zmin

V. SPECIAL CASE: TWO D-DIMENSIONAL TARGETS

In case of two targets it is possible to further improve the run-
time complexity of the exact algorithm. The key insight for this
purpose is that in the two-target case, it is sufficient to optimize
over all direction vectors in order to find the MMOSPA estimate.
By this means, the problem is reduced to enumerating the cells
of a d-dimensional hyperplane arrangement, instead of a 2d-di-
mensional hyperplane arrangement (as it would be in Theorem
2 forn = 2).

For d > 2, the worst-case complexity is O(NJ ™), where
N, is the number of particles. For d = 2, we give a concrete
(simple) algorithm with complexity O(N, log N,,).

The following theorem states that the optimal permutation
for computing the OSPA distance between two state vectors for
two targets is fully determined by two direction vectors (see
Fig. 7(a)). This theorem is actually a two-target version of The-
orem 1.

Theorem 3: For two vectors = [z{,2]] and y =
[giﬂ gg]T, which consist of two targets with dimension d, and
the two permutations 71 (do not switch targets) and w2 (switch
targets) €115, the following holds:

1 1
§\Ig*Pm(£)ll2 < §\IQ*PM(£)|I2 (30)
T
0<{z;—2y,y,—y,)- (31

Intuitively, the target states in z are switched if  and y point in
opposite directions.

Proof: Due to the properties of the scalar product we obtain

lzy =y, 12+ llzy =y, 1* < llzy =y, [P+ llzy — g, |
i
—2z1,y,) — 22y, ¥,) < 2@y, y,) — 222, 8))
i
0<(z — 23,9, —¥,)

Definition 3: For z = [z}, 23] € R* and vector ¢ € R,

we define the operation

T
sort (l) = [&{’&QT} it QT(QI B &2) =0
a\~) — 7
- otherwise

which reorders the vector z according to the direction of a.
It follows from the above theorem that the MMOSPA esti-
mate is uniquely specified by a direction vector.
Lemma 1: For two targets, the MMOSPA estimate &
can be written as

~MMOSPA

MMOSPA

x E{SortaMMOSPA( ) l Z}

A\IMOSPA »MMOSPA

MMOSPA | _

where a = T R MOSPR—

2 MI\AQSPA ‘ |

Proof: The MMOSPA estimate is given by

~MMOSPA
Z

E{PAMMOSPA (z)|Z}

= E{SortaMMOSPA( l Z}
|

A consequence of this theorem is that finding the MMOSPA
estimate for two targets in d-dimensional space is a (d — 1)-di-
mensional optimization problem over all possible direction vec-
tors ¢ € S¢, where the set of all direction vectors is denoted
§4 .= {z € R?|||z|| = 1}. In other words: the direction vector
that yields the minimum MOSPA distance has to be found. The
next theorem shows that it is only necessary to try a polynomial
number of directions in case of particles. This theorem is essen-
tially a special case of Theorem 2. The only difference is that
the hyperplanes for the general case of n-targets in Theorem 2
are nd-dimensional. Here, for the two target case (n = 2), it is
sufficient to consider d-dimensional hyperplanes.

Theorem 4: Suppose we are given the random vector z =
[z7', X", which consists of two d-dimensional single target
states and a corresponding posterior density (3). Then there is a
set of d-dimensional vectors

A={a,,...,ay,} CR? (32)

that contains a specific & € A with

NP
Z wisorté(g(i))
i=1

and the number of direction vectors N, can be bounded by a
polynomial depending on the number of particles V,, i.e.,

~AMMOSPA

&>

Na € O((N,)* ™).



Proof: Each particle () ¢ R?? defines a hyperplane in
Rd

hy = {aeRd\gfa:o}, (33)

where b; := ggi) — gg) is the vector that connects the two target
states, see Fig. 7(b) for a visualization. In this manner, we obtain
a central hyperplane arrangement

A={h;li=1,...,N,}. (34)
The key observation is that sort, (z(*)) is the same for all direc-
tion vectors ¢ in a particular half-space hj and h; according to
Theorem 3. Hence, from a;, a, € S with y(a;) = v(a,) it fol-
lows that sort, () = sort, (29) foralli € {1,...,N,},
which yields E{sort, (z)|Z} = E{sort,, (z)| Z}.

As a consequence, we can enumerate the cells Ci,...,Cn,
and pick @; € C;. Furthermore, the number of cells of a central
arrangement of IV, hyperplanes is known to be bounded by (see
Section I1I) N, € O((N,)4 1), O

Again, it is not necessary to explicitly compute the set A,
because a sign vector s € {—,+}"7 is sufficient to determine
the permutation of the particles. For the two-target case, we can
explicitly write

)=

foralli € {1,...,Np}.

The final algorithm for the two target case is given in Algo-
rithm 3, where it essentially only differs from Algorithm 2 in the
constructed hyperplane arrangement. In the following, we fur-
ther discuss the 2D and 3D case as these are the most important
special cases for two targets, e.g., for displaying the tracks.

=+

P

Algorithm 3: MMOSPA estimate for two d-dimensional
targets with joint density p(z | Z) =Y 1, w; -6(z —z®)

i=

1: Create the hyperplane arrangement A as defined by
(34).

2: S = set of sign vectors specifying the cells A4.

3. Siin = argmin,c s {MOSPA(p(z|Z), 2%)},
where 2% := 3" w; P, (2?)

4: return g%min

A. Two-Dimensional States

For 2D target states, a very simple algorithm for enumerating
the cells can be found, because hyperplanes (through the origin)
in 2D can be ordered according to their orientation. This obser-
vation is used in Algorithm 4 to compute the MMOSPA estimate
for two 2D target states.

The complexity for sorting the hyperplanes is O(N, log N, ).
For each cell, the corresponding MOSPA distance has to be
computed (Line 8 in Algorithm 4). Hence, the overall com-
plexity of Algorithm 4 is O(N;?) with a naive implementation
of line 8. Due to the ordering of the hyperplanes, the MOSPA

distance does not have to be computed from scratch for each
s € 5 and line 8 can be implemented in linear time. As a con-
sequence, the overall complexity becomes O(N,, log N,,).

Algorithm 4: Two two-dimensional targets:
MMOSPA estimate for p(z | Z) = >_;% w; - 6(z — D)

1: Assumption: 2 are sorted such that 8; < ... < BN,»
where 3; € (0, 7) is the angle between the z-axis and
hyperplane h; (as defined in (33)).

2: s =~([1,0/7) // Sign vector of first cell

3: § = {s}

4 fori=1,...,N, —1do

5: (s); = —(s); // Sign vector of next cell
6: S =8uU{s}

7: end for

8: Spmin = argmin e s{MOSPA(p(z|Z), %)},

where 2% := Zf\;Pl w; - Pg(l(z))
9: return i>min

B. Three-Dimensional States

In order to compute the MMOSPA estimate for two three-di-
mensional target states, it is necessary to enumerate the cells of
a 3D central hyperplane arrangement. A 3D central arrangement
of hyperplanes can be considered as 2D non-central hyperplane
arrangement by means of intersection with the 3D unit sphere
S3 (see Fig. 6(c)). Hence, we can use the optimal topological
sweep algorithm as described in [18].

VI. SPECIAL CASE: ONE-DIMENSIONAL STATES

The second relevant special case is that of one-dimensional
targets: there is an intuitive connection between MMOSPA es-
timation and order statistics here. The reason is that the OSPA
distance for one-dimensional target states can be computed by
sorting the state vectors.

Theorem 5: The OSPA metric for two vectors z =
[@1,...,2,)7 and y = [y1,...,yn]? of n one-dimensional
target states is given by

OSPA(z,y)* = %Hsort(g) — sort(y)[|, (35)
where the operator sort(-) sorts the elements of a vector in
ascending order.

Proof: See for example [3], [24], [30]. O

Based on the above theorem, we can relate order statistics to
MMOSPA estimation.

Theorem 6: The MMOSPA estimate for a random
z = [x1,... ,il:n]T consisting of n one-dimensional targets is
given by the mean of the posterior order statistics of z

FMMOSPA — Bfsort(z) | V). (36)
Proof- W.l.o.g., let the MMOSPA estimate #MMOSPA pe
sorted (there are n! MMOSPA estimates and one of them is

sorted). Then sort(z) coincides with P,umosea (z) according
to Theorem 5. |
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Fig. 8. Evaluation results for the naive exact algorithm, novel exact algorithm, and iterative algorithm (for 20 different randomly drawn particles distributions with
N, = 10, N, = 100, and N, = 500 particles). The 7ime row gives the average runtime (in seconds, non-optimized MATLAB code, Intel Core i5 processor).
The Error column is the average squared OSPA distance between the exact and calculated estimate. The Optimal row shows the relative number of trials where the
optimal result has been obtained. Due to its exponential runtime complexity the naive algorithm could only be used for N, = 10 particles. (a) Example particles
for the evaluation with two 2D targets (N, = 10). (b) Example particles for the evaluation with two 3D targets (N, = 10). (c) Detailed results for two 2D targets.

(d) Detailed results for two 3D targets.

In case of a particle representation, (36) can be computed by
sorting the particles (see Algorithm 5), which has a linear run-
time O(N, n logn) in the number of particles INV,,. This algo-
rithm is known in literature in the context of computer vision,
see for example [24].

Algorithm 5: n targets in 1D:
MMOSPA estimate for p(z|Y) = >

return 7 w; - sort(z)

iy wi - d(z — a@)

i=

VII. EVALUATION

In this section, a numerical evaluation of the proposed exact
algorithm is presented for the two target casel. The exact
MMOSPA estimate is compared with the naive exact algorithm
(see Remark 3), and the iterative algorithm [23]. The iterative
algorithm is initialized with the mean of the density as sug-
gested in [23].

a) Two-Dimensional States: We consider two targets with
two dimensional states (n = 2,d = 2) for which a Gaussian
mixture density for the posterior (2) is given. The Gaussian mix-
ture consists of three equally weighted Gaussians with means
[-2,-3,4,6]T,[4,1,3,8]T,and [10, 2, 0,5]%; and identical co-
variance matrices 2I,, where I, is the two dimensional iden-
tity matrix. We obtain three different particle approximations
(3) by sampling from the Gaussian mixture with N, = 10,
N, = 100, and N, = 500 particles. Fig. 8(a) shows an ex-
ample and Fig. 8(c) presents detailed results averaged over 20
trials. The algorithms are compared with regards to runtime and
approximation quality. It can clearly be seen that the iterative
algorithm sometimes gets stuck in local minima. Also, the run-
time of the exact algorithm is significantly lower than the it-
erative algorithm. Hence, the exact algorithm outperforms the
iterative algorithm in all disciplines. The naive exact algorithm
is intractable except for IV, = 10 particles.

b) Three-Dimensional States: We performed the same ex-
periment with three-dimensional state vectors (n = 2,d = 3)
and a Gaussian mixture consisting of three equally weighted
Gaussian with means -2, —3,1,4,6,0]7,[4,1,2,3,8,1]7, and

IMATLAB source code is available at http://www.cloudrunner.eu

[10,2,1,0,5,1]%; and identical covariance matrices 213, where
I5 is the three-dimensional identity matrix. Again, the naive
exact algorithm is intractable and the iterative algorithm tends
to suffer from local minima, see Fig. 8(b) and (d). However, the
iterative algorithm is now faster than the exact algorithm.

VIII. CONCLUSION

MMOSPA estimation has become a fundamental concept in
multi-object estimation, where the traditional MMSE estimator
is meaningless. In this article, we developed algorithms for the
case that the probability densities are represented by particles.
A main (and probably surprising) result is that it is possible to
calculate exact MMOSPA estimates with a polynomial runtime
in the number of particles (and hence not exponential). These al-
gorithms provide an efficient (real-time capable) exact solution
for the two target case and for the one-dimensional case. For the
general case, the algorithms might be useful for an off-line per-
formance assessment of approximate algorithms.
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