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Zusammenfassung Bei der Beobachtung eines räumlich ver-
teilten Phänomens mit einer Vielzahl von Sensoren ist die in-
telligente Auswahl von Messkonfigurationen aufgrund von be-
schränkten Rechen- und Kommunikationskapazitäten entschei-
dend für die Lebensdauer des Sensornetzes. Mit der Sensor-
einsatzplanung kann die im nächsten Zeitschritt anzusteuern-
de Messkonfiguration dynamisch mittels einer stochastischen
modell-prädiktiven Planung über einen endlichen Zeithorizont
bestimmt werden. Dabei wird als Gütekriterium die Maximie-
rung des zu erwartenden Informationsgewinns durch zukünftige
Messungen unter sparsamer Verwendung der Energieressourcen
gewählt. In diesem Artikel wird ein neues Maß für kontinuier-
liche Wahrscheinlichkeitsdichten vorgestellt, das sich kanonisch
aus der Konstruktion eines Vektorraums für Wahrscheinlich-
keitsdichten ergibt. Dieses Maß wird als Gütefunktion in der
vorausschauenden Sensoreinsatzplanung zur Bewertung des in-
formationstheoretischen Einfluß von Messungen auf die aktuelle
Zustandsschätzung verwendet.

1 Einleitung

Mit einem Sensor-Netzwerk werden Daten über ein verteiltes Phänomen
gewonnen und diese dann in einem oder mehreren lokalen Verarbei-
tungszentren geeignet miteinander fusioniert. Um eine hochqualitative
Zustandsschätzung des Phänomens zu erhalten, wäre der Einsatz von



122 D. Lyons et al.

möglichst vielen Sensoren wünschenswert. Dies ist aber in konkreten An-
wendungen generell nicht realisierbar: einerseits kostet jede Messung ei-
nes Sensors Energie, andererseits entstehen durch die Übertragung des
Messwerts über ein Kommunikationsnetzwerk hohe Energiekosten. Da in
einem Sensor-Netzwerk die Energieressourcen der einzelnen Sensorkno-
ten in der Regel beschränkt sind, ist es ratsam, dass nicht jeder Sensor zu
jedem Zeitpunkt Messungen vornimmt, sondern nur diejenigen Sensoren
für Messungen ausgewählt werden, deren Messungen auch einen hohen
Informationsgehalt versprechen.

Diese Auswahl von Sensoren für zukünftige Messungen übernimmt ein
sogenannter Sensormanager. Dieser muß hierbei auch berücksichtigen,
dass die von dem Sensor erhaltene Information durch Messrauschen be-
einflusst sein wird. Zunächst muss der Sensormanger dafür eine geeignete
Gütefunktion wählen, die den zukünftigen Informationsgewinn bewertet,
und dann vorausschauend eine optimale Sensorsequenz bestimmen, die
den akkumulierten Informationsgewinn in Abhängigkeit vom aktuellen
Zustand maximiert.

2 Problemformulierung

Das Ziel der Sensoreinsatzplanung ist es, den Zustand des beobachteten
physikalischen Phänomens mit Hilfe eines Sensor-Netzwerks möglichst
präzise unter Verwendung von möglichst wenigen Sensoren zu schätzen.
Im Folgenden nehmen wir an, dass die räumliche und zeitliche Entwick-
lung des Phänomens durch eine zeitdiskrete und wertkontinuierliche Sys-
temfunktion beschrieben wird, die den Zustand des Phänomens zum Zeit-
punkt k auf den Zustand zum Zeitpunkt k + 1 abbildet.

2.1 Sensorauswahl

Bei einem naiven Vorgehen führt jeder Sensor zu jedem Zeitpunkt eine
Messung durch, die dann geeignet miteinander funsioniert werden. Als
Ergebnis erhält man zwar eine hochqualitative Zustandsschätzung, die
Lebensdauer des Netzwerks würde aber aufgrund des dadurch entste-
henden Energieverbrauchs durch Messungen und Kommunikation stark
verkürzt werden. Daher ist es sinnvoll, ein Gleichgweicht zwischen einer
guter Schätzqualität und einer Verlängerung der Lebensdauer des Netz-
werks zu finden. Der oben erwähnte Sensormanager versucht den erwarte-
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ten Informationsgewinn E{R(xk, sk)} über den Zustand xk des Systems
zu maximieren, wobei die Funktion R( · ) den zukünftigen Informations-
gewinn bewertet und sk = [s1

k, . . . , s
M
k ] eine Sequenz von Sensoren ist, die

für Messungen ausgewählt wurde. Dieser erwartete zukünftige Informa-
tionsgewinn soll modell-prädiktiv, das heißt unter Berücksichtigung der
zukünftigen Entwicklung des Phänomens, maximiert werden [1]. In Kapi-
tel 5.1 wird der konkrete Formalismus unter Anwendung der dynamischen
Programmierung erläutert [2]. Die Lösung dieses Optimierungsproblems
ist eine Sequenz von Sensorkonfigurationen, deren zukünftige Messungen
den erwarteten Informationsgewinn über einen bestimmten Zeithorizont
maximieren. Die erste Sensorkonfiguration in dieser optimalen Sequenz
wird an das Sensornetzwerk angelegt. Die dadurch erhaltenen Messungen
werden, wie im nächsten Kapitel beschrieben, verarbeitet. Im nächsten
Zeitschritt erfolgt dann eine erneute Planung durch den Sensormanager.

2.2 System- und Messmodelle

Wir gehen davon aus, dass die Entwicklung des Zustands des zu beob-
achtenden Phänomens durch folgende Modellgleichung gegeben ist

xk+1 = ak(xk,wk) , (11.1)

wobei alle Größen skalar oder vektorwertig sein können. Die
möglicherweise zeitvariante Systemfunktion ak( · ) bildet den Zustand
xk zum Zeitpunkt k auf den Zustand xk+1 zum Zeitpunkt k + 1 ab.
Das Systemrauschen wk subsummiert dabei alle auftretenden Störungen,
wie z.B. exogene Störeinflüsse oder Modellierungsfehler, und wird sto-
chastisch modelliert. Im Folgenden repräsentieren alle fett geschriebe-
nen Größen Zufallsvariablen. Ist fk(xk) die Wahrscheinlichkeitsdichte,
die den aktuellen Zustand xk beschreibt, so kann mit Hilfe des System-
modells (11.1) die Entwicklung des Systems mittels der unterlagernden
Dichte prädiziert werden

fp
k+1(xk+1) =

∫
Ω

fT
k (xk+1|xk)fk(xk) dxk , (11.2)

wobei fT die Transitionsdichte ist und aus dem Modell (11.1) bestimmt
werden kann.

Die prädizierte Zustandsdichte kann dann mit neu erhaltenen Mes-
sungen fusioniert werden. Dafür wird das Messmodell eines Sensors



124 D. Lyons et al.

sk ∈ {1, . . . , L} benötigt, das den Systemzustand mit dem Ausgang ei-
ner Messung in Zusammenhang setzt. Es wird durch eine nichtlineare
Abbildung

ẑsk
= hsk

(xk,vsk
)

beschrieben, wobei ẑsk
der konkrete Ausgang der Messung und vsk

das
stochastische Messrauschen ist, das für jeden Sensor verschieden sein
kann. Die prädizierte Dichte fp

k wird mit der erhaltenen Meßinformation
nach der Bayes Formel

f e
sk

(xk) =
fL
sk

(ẑsk
|xk)fp

k (xk)∫
Ω
fL
sk

(ẑsk
|xk)fp

k (xk)dxk
(11.3)

fusioniert, wobei fL
sk

(ẑsk
|xk) die sogenannte Likelihood darstellt.

3 Informationstheoretische Gütemaße

Um eine Bewertung des erwarteten Informationsgewinns vorzunehmen,
muss eine Gütefunktion R( · ) definiert werden. Dafür werden wir im Fol-
genden zwei informationstheoretische Gütefunktionen betrachten, die in
der Sensoreinsatzplanung Verwendung finden und ihre jeweiligen Ein-
schränkungen aufzeigen.

3.1 Entropie

Für diskrete Zufallsvariablen mit BildbereichH ist die Shannon–Entropie
[3, 4] definiert als

H(X) := −
∑
x∈H

p(x) log p(x) .

Für sie gilt unter anderem, dass ihr Wert nach oben durch die Entropie
der Gleichverteilung auf H beschränkt ist. Es gilt also

H(X) ≤ log |H| ,

wobei |H| die Anzahl der Elemente inH ist. Die Gleichheit gilt hier genau
dann, wenn X gleichverteilt auf H ist [4]. Eine weitere Eigenschaft der
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diskreten Entropie ist ihre Positivität, die direkt aus der Tatsache folgt,
dass die Wahrscheinlichkeiten p(x) immer in dem Interval [0, 1] liegen
und deshalb p(x) log p(x) ≤ 0 ist.

Demgegenüber ist die Entropie einer kontinuierlichen Zufallsvariablen
X ∼ f mit kontinuierlicher Wahrscheinlichkeitsdichte f definiert als

H(X) := EX {− log f(x)} = −
∫
f(x) log f(x)dx .

Diese Erweiterung der Entropie auf kontinuierliche Wahrscheinlichkeits-
dichten ist keine direkte Verallgemeinerung der Shannon-Entropie [4] und
besitzt einige ihrer grundlegenden Eigenschaften nicht. So kann die konti-
nuierliche Entropie zum Beispiel negative Werte annehmen. Ist X gleich-
verteilt auf [0, 1

n ], so erhält man für die kontinuierliche Entropie

H(X) = −
∫ 1

n

0

n · log n dx = − log n ,

was für n > 1 negativ ist. Neben der Shannon-Entropie und der kon-
tinuierlichen Entropie finden auch aus ihnen abgeleitete Größen, wie
die Kullback-Leibler-Divergenz [4, 5] oder die Transinformation [4], An-
wendung in der Sensoreinsatzplanung [6–11]. Die Zielfunktion R( · ) in
der Sensoreinsatzplanung ist dann die erwartete Entropie der posterio-
ren Dichte nach Messungen von Sensoren sk. Diese ist dann über die
möglichen Messkonfigurationen zu optimieren.

3.2 Fisher-Information

Eine weitere informationstheoretische Gütefunktion, die zum Beispiel
Anwendung in der schritthaltenden Lokalisierung findet [12, 13], ist die
Fisher-Information. Sie ist definiert auf Räumen von Wahrscheinlich-
keitsdichten fξ

B =
{
fξ = f(x, ξ)|ξ ∈ Λ ⊂ Rn

}
mit endlicher Parametrisierung ξ ∈ Λ. Dabei muß gefordert werden, dass
die Abbildung

ξ → fξ
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injektiv ist und

ξ → f(x, ξ)

für jedes x unendlich oft differenzierbar ist [14]. Ein Beispiel für eine
Parametrisierung sind Gaußdichten, die über ihren Mittelwert und die
Kovarianzmatrix charakterisiert werden. Für eine Dichte f(x, ξ) ∈ B ist
dann ein Eintrag gij(ξ) in der Fisher-Informationsmatrix definiert als

gij(ξ) :=
∫
∂ξi log f(x, ξ) · ∂ξj log f(x, ξ) · f(x, ξ)dx .

Die Fisher-Information ist ein Maß für die Information, die eine Zufalls-
variable X ∼ f(x, ξ) über den Parameter ξ enthält. Der Nachteil bei
ihrer Verwendung ist, dass eine endliche Parametrisierung der betrach-
teten Wahrscheinlichkeitsdichten vorliegen und dass diese Parametrisie-
rung abgeschlossen unter den Operationen der Zustandsschätzung aus
Kapitel 2.2 sein muß. Dies ist für nichtlineare Systeme nicht gegeben, da
im nichtlinearen Fall nach der Prädiktion oder Filterung beispielsweise
einer Gaußdichte nicht mehr gewährleistet ist, dass das Ergebnis wieder
eine Gaußdichte darstellt.

4 Log-Ratio-Informationsmaß

In diesem Kapitel wird das Log-Ratio-Informationsmaß für kontinuierli-
che Wahrscheinlichkeitsdichten vorgestellt. Es hat den Vorteil, dass keine
endliche Parametrisierung der unterlagerten Dichten erforderlich ist und
es eine Norm auf einer bestimmten Klasse von Wahrscheinlichkeitsdich-
ten darstellt. So sind Eigenschaften wie zum Beispiel Positivität intrin-
sisch.

4.1 Motivation

In diesem Ansatz werden Dichten als Elemente eines normierten Vek-
torraums A2 aufgefasst [15] und seine Norm als skalares Maß für den
Informationsgehalt einer Dichte interpretiert.

In einem allgemeinen Vektorraum bestimmt die Norm die Länge eines
Vektors, also wie weit dieser Vektor von dem eindeutig bestimmten Null-
vektor des Raums entfernt ist. Der Nullvektor in A2 ist die Dichte der
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Abbildung 11.1: Die Informationsfusion von zwei Sensoren (linke Seite) nach
der Bayes Formel kann als Addition in einem Vektorraum aufgefasst werden
(rechte Seite). Die Log-Ratio-Information der fusionierten Dichte f ⊕ g ist
niemals größer als die Log-Ratio-Information der Teildichten f und g.

Gleichverteilung, die diejenige Verteilung ist, die am wenigsten Informa-
tion über den Ausgang eines Zufallsexperiments bietet, da jeder Ausgang
des Experiments gleich wahrscheinlich ist. Wenn wir also die Längen von
Wahrscheinlichkeitsdichten in A2 messen, bestimmen wir, wie weit eine
Wahrscheinlichkeitsdichte von der Dichte der Gleichverteilung entfernt
ist.

Da das Log-Ratio-Informationsmaß eine Norm ist, wird außerdem ge-
währleistet, dass es für alle Dichten positive Werte annimmt. Zudem ist
eine Form der Dreiecksungleichung unter der Bayesschen Datenfusion
gegeben (s. Abb. 11.1). Diese Dreiecksungleichung ermöglicht es, obere
Schranken für den Informationsgehalt einer fusionierten Dichte anzuge-
ben.

4.2 Definition und Eigenschaften

In diesem Kapitel werden wir das Log-Ratio-Informationsmaß N definie-
ren und seine wichtigsten Eigenschaften nennen.

Definition 1 Sei f : Ω → R eine nicht-negative Funktion und log f ∈
L2(Ω). Die Log-Ratio-Information von f ist durch

N(f) :=

√∫
Ω

∫
Ω

[
log
(
f(x)
f(y)

)]2

dx dy (11.4)

gegeben.
In der Definition wird gefordert, dass der Logarithmus der Dichte f

quadratintegrierbar über Ω sein muß, um sicher zu gehen, dass alle Inte-
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grale existieren. Ein ähnliches Vorgehen wäre zu fordern, dass die Inte-
grale in (11.4) wie in der Definition der kontinuierlichen Entropie existie-
ren [4]. Die wesentlichen Eigenschaften des Log-Ratio-Informationsmaßes
werden durch folgendes Theorem beschrieben.

Theorem 1 Das Informationsmaß aus Definition 1 erfüllt die folgenden
Eigenschaften für alle Dichten f und g wie in Definition 1

• N(f) ≥ 0 ,

• N(f) = 0 genau dann, wenn f die Dichte der Gleichverteilung auf
Ω ist und

• N(f · g) ≤ N(f) + N(g) .

Der Beweis folgt aus der Konstruktion des Vektorraums und findet sich
in [15].

Obwohl das Log-Ratio-Informationsmaß durch ein Doppelintegral über
den Raum Ω definiert ist, gibt es eine Reformulierung mit einfachen
Integralen, die die Berechenbarkeit vereinfacht.

Theorem 2 Sei f eine Funktion gemäß Definition 1 und Ω beschränkt,
dann gilt für N(f)

N(f)2 = 2µ(Ω)
∫

Ω

[log f(x)]2 dx− 2
[∫

Ω

log f(x)dx
]2

,

wobei µ das Maß auf Ω ist.

Wie sich das Log-Ratio-Informationsmaß verhält, zeigen folgende Bei-
spielrechnungen:

1. Sei X1 ∼ f(x) eine exponentiell verteilte Zufallsvariable mit Dichte

f(x) = λe−λx ,

definiert auf der positiven reellen Halbachse [0,∞). Der Logarith-
mus von f ist offensichtlich in L2([0, a]) für jedes a < ∞. Für ein
festes a ist

N(f)2 = λ2

∫ a

0

∫ a

0

(y − x)2
dxdy .

Eine Maximierung von N(f)2 führt also zu einer Minimierung der
Varianz 1

λ2 .
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2. Ist X2 ∼ G(x) eine Zufallsvariable mit Gaußdichte

G(x) =
1√
2πσ

exp
(
−x

2

σ2

)
,

so gilt für jedes beschränkte Ω = [a, b] ⊂ R, dass der Logarithmus
von G quadratintegrierbar ist,

logG = −x
2

σ2
− log

1√
2πσ

ein Polynom zweiten Grades ist. Die Log-Ratio-Information von G
ist

N(G)2 =
1
σ2

∫ b

a

∫ b

a

(y2 − x2)dxdy ,

und für festes Intervall [a, b] entspricht eine Maximierung von N(G)
einer Minimierung der Standardabweichung 1

σ .

5 Sensoreinsatzplanung

In diesem Kapitel werden wir das Log-Ratio-Informationsmaß auf die
Sensoreinsatzplanung anwenden, indem wir es als eine informationstheo-
retische Gütefunktion auffassen. Aus Gründen der Übersichtlichkeit be-
trachten wir nur den Fall, dass zu jedem Zeitschritt k ein Sensor sk für
Messungen ausgewählt werden soll. Der Ansatz kann aber ohne Weite-
res auf den Fall einer gesamten Sensorkonfiguration sk = [sk1, . . . , skn]
verallgemeinert werden.

5.1 Auswahl von Sensoren

Die Aufgabe des Sensormanagers ist es, Sensoren für Messungen aus-
zuwählen, deren Messungen einen hohen Informationsgehalt über den
Zustand des Systems haben. Wir bezeichnen mit fk die Dichte, die
die gegenwärtige Zustandsschätzung beschreibt, und mit fp

k die Dich-
te, die wir erhalten, nachdem wir die gegenwärtige Schätzung mit dem
Prädiktionsschritt (11.2) fortschreiben. Die Dichte f e

sk
bezeichne die pos-

teriore Dichte

f e
sk

(xk|ẑsk
) :=

1
ck
fp
k (xk) · fL

sk
(ẑsk
|xk) ,
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die erhalten wird, nachdem die priore Dichte fp
k mit der Likelihood fL

sk

des Sensors sk gefiltert wurde.
Den erwarteten Informationsgewinn nach Filterung der aktuellen Zu-

standsschätzung mit Messungen zsk
von Sensor sk wird als

Ezsk

{
N(fe

sk
( · | zsk

))
}

(11.5)

definiert. Die Schreibweise N(f e
sk

( · | zk)) bedeutet, dass die Log-Ratio-
Information in Abhängigkeit von zk ausgewertet wird. Eine Maximierung
von (11.5) führt zu einer Maximierung des erwarteten Informationsge-
winnes im nächsten Zeitschritt. Bei einem modell-prädiktiven Ansatz zur
Planung über einen gewissen Horizont wird diese Gütefunktion in die re-
kursive Gleichung zur Bestimmung einer optimalen Lösung eingefügt [2].
Die Lösung nach dem Bellmanschen Optimalitätsprinzip für den maxi-
malen Informationsgewinn über N Zeitschritte berechnet sich rekursiv
aus

Vk(fk) := max
sk

[
Ezsk

{
N(fe

sk
( · | zsk

)) + Vk+1(fe
sk

( · | zsk
))
}]

(11.6)

mit terminalem Gewinn

VN (fk) := max
sN

[
EzsN

{
N(fe

sN( · | zsN
))
}]

(11.7)

im letzten Zeitschritt. Durch die vorausschauende Planung fließt das
zukünftige Verhalten des Phänomens unter Berücksichtigung des Sys-
temrauschens bereits bei der Auswahl der Sensoren ein. Das folgende
Beispiel zeigt, dass durch diesen Ansatz eine hohe Schätzqualität unter
Verwendung nur eines Sensors pro Zeitschritt erreicht werden kann, was
zu einer erheblichen Erhöhung der Lebensdauer des Netzwerks führt.

5.2 Beispiel

Wir betrachten ein Beispiel bestehend aus einem Sensornetzwerk mit
drei Winkelsensoren und zwei Abstandssensoren [11]. Die Aufgabe des
Sensormanagers in diesem Beispiel ist es, in jedem Zeitschritt einen Sen-
sor auszuwählen, um ein Fahrzeug über zehn Zeitschritte zu lokalisie-
ren. Die quadratische Abweichung der geschätzten zu der wahren Po-
sition des Fahrzeugs wird in Abb. 11.2 als durchgezogene Linie darge-
stellt. Diese Abweichung wird verglichen mit der Qualität der Zustands-
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Abbildung 11.2: Die durchschnittliche quadratische Abweichung (rmse) der
Zustandsschätzung über 20 Testläufe mit einem in jedem Zeitschritt zufällig
ausgewählten Sensor (rote gestrichelte Linie mit Kreuzen), der Entropie (blaue
gestrichelte Linie) und der Log-Ratio-Information als Gütefunktion (blaue
durchgezogene Linie).

schätzung, die ein Manager erreicht, der zufällig einen Sensor zum Mes-
sen auswählt (gestrichelte Linie). Es ist dabei deutlich zu sehen, dass die
Zustandsschätzung für die Log-Ratio-Information wesentlich genauer ist.

6 Ausblick

Das vorgestellte Log-Ratio-Informationmaß weist Eigenschaften wie Po-
sitivität und die Erfüllung der Dreiecksungleichung auf. Diese erlauben
es, sowohl obere als auch untere Schranken für den optimalen Informa-
tionsgewinn anzugeben. Dadurch wird eine ganze Klasse von neuartigen
Verfahren zur Bestimmung der optimalen Messkonfigurationssequenz er-
schlossen und eine Bewertung der so gefundenen Lösungen ermöglicht.
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