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Zusammenfassung Bei der Beobachtung eines rdumlich ver-
teilten Phdnomens mit einer Vielzahl von Sensoren ist die in-
telligente Auswahl von Messkonfigurationen aufgrund von be-
schrankten Rechen- und Kommunikationskapazitédten entschei-
dend fiir die Lebensdauer des Sensornetzes. Mit der Sensor-
einsatzplanung kann die im n#chsten Zeitschritt anzusteuern-
de Messkonfiguration dynamisch mittels einer stochastischen
modell-pridiktiven Planung iiber einen endlichen Zeithorizont
bestimmt werden. Dabei wird als Giitekriterium die Maximie-
rung des zu erwartenden Informationsgewinns durch zukiinftige
Messungen unter sparsamer Verwendung der Energieressourcen
gewdhlt. In diesem Artikel wird ein neues Maf fiir kontinuier-
liche Wahrscheinlichkeitsdichten vorgestellt, das sich kanonisch
aus der Konstruktion eines Vektorraums fiir Wahrscheinlich-
keitsdichten ergibt. Dieses Mafl wird als Giitefunktion in der
vorausschauenden Sensoreinsatzplanung zur Bewertung des in-
formationstheoretischen Einflufl von Messungen auf die aktuelle
Zustandsschitzung verwendet.

1 Einleitung

Mit einem Sensor-Netzwerk werden Daten iiber ein verteiltes Phanomen
gewonnen und diese dann in einem oder mehreren lokalen Verarbei-
tungszentren geeignet miteinander fusioniert. Um eine hochqualitative
Zustandsschétzung des Phénomens zu erhalten, wire der Einsatz von
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moglichst vielen Sensoren wiinschenswert. Dies ist aber in konkreten An-
wendungen generell nicht realisierbar: einerseits kostet jede Messung ei-
nes Sensors Energie, andererseits entstehen durch die Ubertragung des
Messwerts {iber ein Kommunikationsnetzwerk hohe Energiekosten. Da in
einem Sensor-Netzwerk die Energieressourcen der einzelnen Sensorkno-
ten in der Regel beschriankt sind, ist es ratsam, dass nicht jeder Sensor zu
jedem Zeitpunkt Messungen vornimmt, sondern nur diejenigen Sensoren
fir Messungen ausgewihlt werden, deren Messungen auch einen hohen
Informationsgehalt versprechen.

Diese Auswahl von Sensoren fiir zukiinftige Messungen {ibernimmt ein
sogenannter Sensormanager. Dieser mufl hierbei auch beriicksichtigen,
dass die von dem Sensor erhaltene Information durch Messrauschen be-
einflusst sein wird. Zun#chst muss der Sensormanger dafiir eine geeignete
Giitefunktion wéhlen, die den zukiinftigen Informationsgewinn bewertet,
und dann vorausschauend eine optimale Sensorsequenz bestimmen, die
den akkumulierten Informationsgewinn in Abhéngigkeit vom aktuellen
Zustand maximiert.

2 Problemformulierung

Das Ziel der Sensoreinsatzplanung ist es, den Zustand des beobachteten
physikalischen Phdnomens mit Hilfe eines Sensor-Netzwerks moglichst
prézise unter Verwendung von moglichst wenigen Sensoren zu schitzen.
Im Folgenden nehmen wir an, dass die rdumliche und zeitliche Entwick-
lung des Phénomens durch eine zeitdiskrete und wertkontinuierliche Sys-
temfunktion beschrieben wird, die den Zustand des Phinomens zum Zeit-
punkt k£ auf den Zustand zum Zeitpunkt £ + 1 abbildet.

2.1 Sensorauswahl

Bei einem naiven Vorgehen fiihrt jeder Sensor zu jedem Zeitpunkt eine
Messung durch, die dann geeignet miteinander funsioniert werden. Als
Ergebnis erhélt man zwar eine hochqualitative Zustandsschétzung, die
Lebensdauer des Netzwerks wiirde aber aufgrund des dadurch entste-
henden Energieverbrauchs durch Messungen und Kommunikation stark
verkiirzt werden. Daher ist es sinnvoll, ein Gleichgweicht zwischen einer
guter Schiitzqualitéit und einer Verldngerung der Lebensdauer des Netz-
werks zu finden. Der oben erwidhnte Sensormanager versucht den erwarte-
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ten Informationsgewinn E{R(z,,s,)} iiber den Zustand z, des Systems
zu maximieren, wobei die Funktion R(-) den zukiinftigen Informations-
gewinn bewertet und s, = [s},, ..., S{CV[ ] eine Sequenz von Sensoren ist, die
fiir Messungen ausgewédhlt wurde. Dieser erwartete zukiinftige Informa-
tionsgewinn soll modell-priadiktiv, das heifit unter Beriicksichtigung der
zukiinftigen Entwicklung des Phdnomens, maximiert werden [1]. In Kapi-
tel 5.1 wird der konkrete Formalismus unter Anwendung der dynamischen
Programmierung erldutert [2]. Die Losung dieses Optimierungsproblems
ist eine Sequenz von Sensorkonfigurationen, deren zukiinftige Messungen
den erwarteten Informationsgewinn iiber einen bestimmten Zeithorizont
maximieren. Die erste Sensorkonfiguration in dieser optimalen Sequenz
wird an das Sensornetzwerk angelegt. Die dadurch erhaltenen Messungen
werden, wie im néchsten Kapitel beschrieben, verarbeitet. Im néchsten
Zeitschritt erfolgt dann eine erneute Planung durch den Sensormanager.

2.2 System- und Messmodelle

Wir gehen davon aus, dass die Entwicklung des Zustands des zu beob-
achtenden Phidnomens durch folgende Modellgleichung gegeben ist

Ty = ag(Zy, wy,) (11.1)

wobei alle Groflen skalar oder vektorwertig sein konnen. Die
moglicherweise zeitvariante Systemfunktion a,(-) bildet den Zustand
;. zum Zeitpunkt k auf den Zustand z;,, zum Zeitpunkt k + 1 ab.
Das Systemrauschen w;, subsummiert dabei alle auftretenden Stérungen,
wie z.B. exogene Storeinfliisse oder Modellierungsfehler, und wird sto-
chastisch modelliert. Im Folgenden représentieren alle fett geschriebe-
nen Groflen Zufallsvariablen. Ist fi(z,) die Wahrscheinlichkeitsdichte,
die den aktuellen Zustand z;, beschreibt, so kann mit Hilfe des System-
modells (11.1) die Entwicklung des Systems mittels der unterlagernden
Dichte préadiziert werden

SRy () = / SE L) fi(y) (112)

wobei fT die Transitionsdichte ist und aus dem Modell (11.1) bestimmt
werden kann.

Die prédizierte Zustandsdichte kann dann mit neu erhaltenen Mes-
sungen fusioniert werden. Dafiir wird das Messmodell eines Sensors
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sk € {1,..., L} benétigt, das den Systemzustand mit dem Ausgang ei-
ner Messung in Zusammenhang setzt. Es wird durch eine nichtlineare
Abbildung

g, = by, (x4, 0,)

XN

beschrieben, wobei Z,, der konkrete Ausgang der Messung und v,, das
stochastische Messrauschen ist, das fiir jeden Sensor verschieden sein
kann. Die prédizierte Dichte f; wird mit der erhaltenen MeBinformation
nach der Bayes Formel

e (III ) fI;E(Ask|zk)f]g( )
snAk fQ (24, g ) f7 (2, ) dy,

fusioniert, wobei fi (2, |z;) die sogenannte Likelihood darstellt.

(11.3)

3 Informationstheoretische GiitemaBe

Um eine Bewertung des erwarteten Informationsgewinns vorzunehmen,
muss eine Giitefunktion R(-) definiert werden. Dafiir werden wir im Fol-
genden zwei informationstheoretische Giitefunktionen betrachten, die in
der Sensoreinsatzplanung Verwendung finden und ihre jeweiligen Ein-
schrénkungen aufzeigen.

3.1 Entropie

Fiir diskrete Zufallsvariablen mit Bildbereich H ist die Shannon—Entropie
[3,4] definiert als

H(X) ==Y p(z)logp(x) .
zEH

Fiir sie gilt unter anderem, dass ihr Wert nach oben durch die Entropie
der Gleichverteilung auf H beschrankt ist. Es gilt also

H(X) <log[H],

wobei |H| die Anzahl der Elemente in H ist. Die Gleichheit gilt hier genau
dann, wenn X gleichverteilt auf H ist [4]. Eine weitere Eigenschaft der
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diskreten Entropie ist ihre Positivitét, die direkt aus der Tatsache folgt,
dass die Wahrscheinlichkeiten p(z) immer in dem Interval [0, 1] liegen
und deshalb p(x)log p(z) < 0 ist.

Demgegeniiber ist die Entropie einer kontinuierlichen Zufallsvariablen
X ~ f mit kontinuierlicher Wahrscheinlichkeitsdichte f definiert als

H(X) = Ex {~log f(x)} = - / F(@) log f(z)dz

Diese Erweiterung der Entropie auf kontinuierliche Wahrscheinlichkeits-
dichten ist keine direkte Verallgemeinerung der Shannon-Entropie [4] und
besitzt einige ihrer grundlegenden Eigenschaften nicht. So kann die konti-
nuierliche Entropie zum Beispiel negative Werte annehmen. Ist X gleich-
verteilt auf [0, %], so erhilt man fiir die kontinuierliche Entropie

1
H(X):—/O n-logn dr=—logn ,

was fiir n > 1 negativ ist. Neben der Shannon-Entropie und der kon-
tinuierlichen Entropie finden auch aus ihnen abgeleitete Grofien, wie
die Kullback-Leibler-Divergenz [4,5] oder die Transinformation [4], An-
wendung in der Sensoreinsatzplanung [6-11]. Die Zielfunktion R(-) in
der Sensoreinsatzplanung ist dann die erwartete Entropie der posterio-
ren Dichte nach Messungen von Sensoren s,. Diese ist dann iiber die
moglichen Messkonfigurationen zu optimieren.

3.2 Fisher-Information

Eine weitere informationstheoretische Giitefunktion, die zum Beispiel
Anwendung in der schritthaltenden Lokalisierung findet [12,13], ist die
Fisher-Information. Sie ist definiert auf Rdumen von Wahrscheinlich-
keitsdichten f¢

B={fc=f(z,¢l{c ACR"}

mit endlicher Parametrisierung § € A. Dabei mufl gefordert werden, dass
die Abbildung

E— Je
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injektiv ist und

fir jedes z unendlich oft differenzierbar ist [14]. Ein Beispiel fiir eine
Parametrisierung sind Gaufidichten, die iiber ihren Mittelwert und die
Kovarianzmatrix charakterisiert werden. Fiir eine Dichte f(z,&) € B ist
dann ein Eintrag ¢;;(§) in der Fisher-Informationsmatrix definiert als

gy (6) = / 9. log f (2. €) - O, log f(2,€) - f(z. ) .

Die Fisher-Information ist ein Maf fiir die Information, die eine Zufalls-
variable X ~ f(z,¢) iiber den Parameter ¢ enthilt. Der Nachteil bei
ihrer Verwendung ist, dass eine endliche Parametrisierung der betrach-
teten Wahrscheinlichkeitsdichten vorliegen und dass diese Parametrisie-
rung abgeschlossen unter den Operationen der Zustandsschétzung aus
Kapitel 2.2 sein muf. Dies ist fiir nichtlineare Systeme nicht gegeben, da
im nichtlinearen Fall nach der Prédiktion oder Filterung beispielsweise
einer Gaufldichte nicht mehr gewéhrleistet ist, dass das Ergebnis wieder
eine GauBdichte darstellt.

4 Log-Ratio-InformationsmalB

In diesem Kapitel wird das Log-Ratio-Informationsmaf fiir kontinuierli-
che Wahrscheinlichkeitsdichten vorgestellt. Es hat den Vorteil, dass keine
endliche Parametrisierung der unterlagerten Dichten erforderlich ist und
es eine Norm auf einer bestimmten Klasse von Wahrscheinlichkeitsdich-
ten darstellt. So sind Eigenschaften wie zum Beispiel Positivitat intrin-
sisch.

4.1 Motivation

In diesem Ansatz werden Dichten als Elemente eines normierten Vek-
torraums A% aufgefasst [15] und seine Norm als skalares Maf} fiir den
Informationsgehalt einer Dichte interpretiert.

In einem allgemeinen Vektorraum bestimmt die Norm die Lénge eines
Vektors, also wie weit dieser Vektor von dem eindeutig bestimmten Null-
vektor des Raums entfernt ist. Der Nullvektor in A2 ist die Dichte der
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Abbildung 11.1: Die Informationsfusion von zwei Sensoren (linke Seite) nach
der Bayes Formel kann als Addition in einem Vektorraum aufgefasst werden
(rechte Seite). Die Log-Ratio-Information der fusionierten Dichte f @ g ist
niemals grofer als die Log-Ratio-Information der Teildichten f und g.

Gleichverteilung, die diejenige Verteilung ist, die am wenigsten Informa-
tion iiber den Ausgang eines Zufallsexperiments bietet, da jeder Ausgang
des Experiments gleich wahrscheinlich ist. Wenn wir also die Léngen von
Wahrscheinlichkeitsdichten in .42 messen, bestimmen wir, wie weit eine
Wahrscheinlichkeitsdichte von der Dichte der Gleichverteilung entfernt
ist.

Da das Log-Ratio-Informationsmaf} eine Norm ist, wird auflerdem ge-
wéhrleistet, dass es fiir alle Dichten positive Werte annimmt. Zudem ist
eine Form der Dreiecksungleichung unter der Bayesschen Datenfusion
gegeben (s. Abb. 11.1). Diese Dreiecksungleichung ermoglicht es, obere
Schranken fiir den Informationsgehalt einer fusionierten Dichte anzuge-
ben.

4.2 Definition und Eigenschaften

In diesem Kapitel werden wir das Log-Ratio-Informationsmafl N definie-
ren und seine wichtigsten Eigenschaften nennen.

Definition 1 Sei f : 2 — R eine nicht-negative Funktion und log f €
L?(9). Die Log-Ratio-Information von f ist durch

N(f) = ¢ [ ] o (52)] 110

gegeben.
In der Definition wird gefordert, dass der Logarithmus der Dichte f
quadratintegrierbar iiber €2 sein muf}, um sicher zu gehen, dass alle Inte-
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grale existieren. Ein dhnliches Vorgehen wére zu fordern, dass die Inte-
grale in (11.4) wie in der Definition der kontinuierlichen Entropie existie-
ren [4]. Die wesentlichen Eigenschaften des Log-Ratio-Informationsmafes
werden durch folgendes Theorem beschrieben.

Theorem 1 Das Informationsmafl aus Definition 1 erfillt die folgenden
FEigenschaften fiir alle Dichten f und g wie in Definition 1

e N(f)=0,

e N(f) =0 genau dann, wenn f die Dichte der Gleichverteilung auf
Q ist und

e N(f-g) < N(f)+ N(g) -

Der Beweis folgt aus der Konstruktion des Vektorraums und findet sich
in [15].

Obwohl das Log-Ratio-Informationsmaf} durch ein Doppelintegral iiber
den Raum €2 definiert ist, gibt es eine Reformulierung mit einfachen
Integralen, die die Berechenbarkeit vereinfacht.

Theorem 2 Sei f eine Funktion gemdf§ Definition 1 und 2 beschrdinkt,
dann gilt fir N(f)

NP = 2u(@) [ Dog f(@)f dz 2 { [ e f(x)dxr ,

wobei 1 das Maf$ auf Q ist.

Wie sich das Log-Ratio-Informationsmaf} verhélt, zeigen folgende Bei-
spielrechnungen:

1. Sei X7 ~ f(z) eine exponentiell verteilte Zufallsvariable mit Dichte
f(x) = e,

definiert auf der positiven reellen Halbachse [0, c0). Der Logarith-
mus von f ist offensichtlich in L?([0,a]) fiir jedes a < oco. Fiir ein
festes a ist

N(f)? AQ/Oajoa (y — 2)” dady .

Eine Maximierung von IN(f)? fiihrt also zu einer Minimierung der
. 1
Varianz 5.
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2. Ist X9 ~ G(x) eine Zufallsvariable mit GauBdichte

Glz) = ﬁexp (—ﬁ) ,

so gilt fiir jedes beschriinkte Q = [a,b] C R, dass der Logarithmus
von G quadratintegrierbar ist,

2

1
log G = —% — log
g

2ro

ein Polynom zweiten Grades ist. Die Log-Ratio-Information von G
ist

b b
N(G)* = %/ / (y* — 2*)dzdy ,
(<) a a

und fiir festes Intervall [a, b] entspricht eine Maximierung von N(G)
einer Minimierung der Standardabweichung %

5 Sensoreinsatzplanung

In diesem Kapitel werden wir das Log-Ratio-Informationsmafl auf die
Sensoreinsatzplanung anwenden, indem wir es als eine informationstheo-
retische Giitefunktion auffassen. Aus Griinden der Ubersichtlichkeit be-
trachten wir nur den Fall, dass zu jedem Zeitschritt k ein Sensor sj fiir
Messungen ausgewihlt werden soll. Der Ansatz kann aber ohne Weite-
res auf den Fall einer gesamten Sensorkonfiguration s, = [Sk1,- - -, Skn]
verallgemeinert werden.

5.1 Auswahl von Sensoren

Die Aufgabe des Sensormanagers ist es, Sensoren fiir Messungen aus-
zuwéhlen, deren Messungen einen hohen Informationsgehalt iiber den
Zustand des Systems haben. Wir bezeichnen mit f; die Dichte, die
die gegenwiirtige Zustandsschiitzung beschreibt, und mit f} die Dich-
te, die wir erhalten, nachdem wir die gegenwiirtige Schitzung mit dem
Prédiktionsschritt (11.2) fortschreiben. Die Dichte fs, bezeichne die pos-
teriore Dichte

1
ffk@k-@sk) = af;?(ik)‘f; (zsk@k) )
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die erhalten wird, nachdem die priore Dichte f; mit der Likelihood stk
des Sensors sy, gefiltert wurde.

Den erwarteten Informationsgewinn nach Filterung der aktuellen Zu-
standsschitzung mit Messungen z, von Sensor s; wird als

By, AN (- l2z,))} (11.5)

definiert. Die Schreibweise N(fs, ( - | z;)) bedeutet, dass die Log-Ratio-
Information in Abhéngigkeit von z, ausgewertet wird. Eine Maximierung
von (11.5) fithrt zu einer Maximierung des erwarteten Informationsge-
winnes im néichsten Zeitschritt. Bei einem modell-pradiktiven Ansatz zur
Planung iiber einen gewissen Horizont wird diese Giitefunktion in die re-
kursive Gleichung zur Bestimmung einer optimalen Losung eingefiigt [2].
Die Losung nach dem Bellmanschen Optimalitédtsprinzip fiir den maxi-
malen Informationsgewinn iiber N Zeitschritte berechnet sich rekursiv
aus

Vi(fie) = max (B, {N((- | 25)) + Vien (5.0 1 2,))3] (11.6)
mit terminalem Gewinn

Viv(fe) = max[E,, {N(£5,( - | z,))}] (11.7)

im letzten Zeitschritt. Durch die vorausschauende Planung fliefit das
zukiinftige Verhalten des Phinomens unter Beriicksichtigung des Sys-
temrauschens bereits bei der Auswahl der Sensoren ein. Das folgende
Beispiel zeigt, dass durch diesen Ansatz eine hohe Schitzqualitdt unter
Verwendung nur eines Sensors pro Zeitschritt erreicht werden kann, was
zu einer erheblichen Erh6hung der Lebensdauer des Netzwerks fiihrt.

5.2 Beispiel

Wir betrachten ein Beispiel bestehend aus einem Sensornetzwerk mit
drei Winkelsensoren und zwei Abstandssensoren [11]. Die Aufgabe des
Sensormanagers in diesem Beispiel ist es, in jedem Zeitschritt einen Sen-
sor auszuwéhlen, um ein Fahrzeug {iber zehn Zeitschritte zu lokalisie-
ren. Die quadratische Abweichung der geschitzten zu der wahren Po-
sition des Fahrzeugs wird in Abb. 11.2 als durchgezogene Linie darge-
stellt. Diese Abweichung wird verglichen mit der Qualitdt der Zustands-
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Abbildung 11.2: Die durchschnittliche quadratische Abweichung (rmse) der
Zustandsschétzung iiber 20 Testldufe mit einem in jedem Zeitschritt zufillig
ausgewihlten Sensor (rote gestrichelte Linie mit Kreuzen), der Entropie (blaue
gestrichelte Linie) und der Log-Ratio-Information als Giitefunktion (blaue
durchgezogene Linie).

schitzung, die ein Manager erreicht, der zufillig einen Sensor zum Mes-
sen auswihlt (gestrichelte Linie). Es ist dabei deutlich zu sehen, dass die
Zustandsschatzung fiir die Log-Ratio-Information wesentlich genauer ist.

6 Ausblick

Das vorgestellte Log-Ratio-Informationmafl weist FEigenschaften wie Po-
sitivitdt und die Erfiillung der Dreiecksungleichung auf. Diese erlauben
es, sowohl obere als auch untere Schranken fiir den optimalen Informa-
tionsgewinn anzugeben. Dadurch wird eine ganze Klasse von neuartigen
Verfahren zur Bestimmung der optimalen Messkonfigurationssequenz er-
schlossen und eine Bewertung der so gefundenen Losungen ermoglicht.
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