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Zusammenfassung Die systematische Behandlung von Unsi-
cherheiten stellt eine wesentliche Herausforderung in der Infor-
mationsfusion dar. Einerseits müssen geeignete Darstellungsfor-
men für die Unsicherheiten bestimmt werden und andererseits
darauf aufbauend effiziente Schätzverfahren hergeleitet werden.
Im Allgemeinen wird zwischen stochastischen und mengenbasier-
ten Unsicherheitsbeschreibungen unterschieden. Dieser Beitrag
stellt ein Verfahren zur Zustandsschätzung vor, welches simultan
stochastische und mengenbasierte Fehlergrößen berücksichtigen
kann, indem unsichere Größen nicht mehr durch eine einzelne
Wahrscheinlichkeitsdichte, sondern durch eine Menge von Dich-
ten repräsentiert werden. Besonderes Augenmerk liegt hier auf
den Vorteilen und Anwendungsmöglichkeiten dieser Unsicher-
heitsbeschreibung.

1 Einleitung

Ein zentrales Einsatzgebiet verteilter Sensorsysteme ist die Überwachung
und Vermessung weiträumiger Phänomene, z.B. zur Bestimmung von
Schadstoffverteilungen im Grundwasser, zur Überwachung seismischer
Aktivitäten oder zur Messung von Temperaturverteilungen. Aus einer
Vielzahl von Messungen, welche im Allgemeinen fehlerbehaftet sind, soll
sich schließlich ein Gesamtbild des Phänomens ergeben. Eine wesent-
liche Herausforderung dabei stellt die Entwicklung effizienter Methoden
zur Informationsfusion unter Berücksichtigung auftretender Unsicherhei-
ten dar. Die stochastische Modellierung unsicherer Größen ist eine weit-
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verbreitete Herangehensweise. Hierfür kommen im Allgemeinen rekursi-
ve bayessche Schätzverfahren, wie das Kalman-Filter [1] oder Partikel-
Filtermethoden [2], zum Einsatz. Allerdings stützen sich diese Verfah-
ren auf die Voraussetzung, dass die Wahrscheinlichkeitsverteilungen der
Fehlergrößen bekannt sind. Werden hier falsche Annahmen getroffen,
sind inkonsistente Schätzergebnisse zu erwarten. Eine andere Art der Un-
sicherheitsbeschreibung ist die Verwendung von Mengen zur Fehlerein-
grenzung [3,4]. Sie eignet sich für die Betrachtung amplitudenbegrenzter
Fehler. Der Vorteil dieser Vorgehensweise besteht in der Bestimmung
sicherer Fehlergrenzen. Die Behandlung von Ausreißern gestaltet sich
dadurch jedoch als schwierig.

In dieser Arbeit wird zunächst ein Schätzverfahren zur simulta-
nen Berücksichtigung stochastischer und mengenbasierter Unsicherhei-
ten vorgestellt. Ein solches Verfahren ermöglicht eine differenzierte, sys-
tematische Modellierung von Fehlereinflüssen. Das wesentliche Ziel der
Arbeit ist es, die Vorteile und Anwendungsmöglichkeiten, die durch den
Einsatz solcher Verfahren entstehen, zu beschreiben. Es werden Fälle
aufgezeigt, in denen Mengen von Wahrscheinlichkeitsdichten besondere
Vorteile bieten, wie bei der Abschätzung von Linearisierungsfehlern oder
der Verarbeitung komplizierter Wahrscheinlichkeitsdichten.

2 Schätzverfahren unter Berücksichtigung stochastischer
und mengenbasierter Unsicherheiten

Methoden zur Überwachung und Vermessung räumlich verteilter, dy-
namischer Phänomene – wie sie z.B. in [5] vorgestellt werden – nut-
zen physikalisches Hintergrundwissen über die räumliche und zeitliche
Entwicklung, um einerseits das Phänomen auch an Nichtmesspunk-
ten zu charakterisieren sowie andererseits den aktuellen Zustand zum
nächsten Messzeitpunkt zu prädizieren. Prädizierte Zustandsinformatio-
nen können dann mit Messungen fusioniert werden. Im Allgemeinen lässt
sich die Zustandsentwicklung durch ein System partieller Differentialglei-
chungen beschreiben. Dieses kann dann durch eine Orts- und Zeitdiskre-
tisierung in ein Systemmodell

xk+1 = ak(xk, ûk,wk, dk) (14.1)



Systematische Beschreibung von Unsicherheiten 169

überführt werden. Die Funktion ak bildet den Zustand xk zum Zeit-
punkt k auf den Folgezustand xk+1 ab. Stochastische Unsicherheiten
werden hierbei in der Zufallsgröße wk zusammengefasst, welche durch
die Wahrscheinlichkeitsdichte fwk charakterisiert ist. Systematische Unsi-
cherheiten werden durch den unbekannten, aber begrenzten Fehlerterm
dk ∈ Dk ⊂ Rn in die Abbildung einbezogen. Der Vektor ûk bezeich-
net die konkrete Eingangs- bzw. Stellgröße. Entsprechend werden in dem
Messmodell

ŷ
k

= hk(xk,vk, ek) (14.2)

jedes einzelnen Sensors stochastische Störeinflüsse durch vk und unbe-
kannte, aber begrenzte Fehlergrößen durch ek ∈ Ek ⊂ Rn notiert. ŷ

k
ist

dann die konkrete Messgröße.
Stochastische und mengenbasierte Fehlerbeschreibungen sollen si-

multan in einem Verfahren zur Schätzung des Systemzustands xk
berücksichtigt werden. Ein Verfahren, das die kombinierte Behandlung
beider Fehlerarten erlaubt, ist das SSI-Filter (Statistical and Set-theoretic
Information Filter [6]). Dieses Filter wurde speziell dazu entwickelt, um
bei der Informationsfusion Abhängigkeitstrukturen zwischen den men-
genbasierten Unsicherheiten auszunutzen. Da in dieser Arbeit die Größen
dk ∈ Dk und ek ∈ Ek Unwissen über Fehlereinflüsse darstellen, ist das
Ausnutzen von Abhängigkeiten, da unbekannt, hier nicht möglich. Für
diese Situation lässt sich mit Hilfe einer Verallgemeinerung klassischer
Wahrscheinlichkeitstheorie das im folgenden Abschnitt beschriebene Ver-
fahren entwickeln.

2.1 Zustandsschätzung mit Mengen von Wahrscheinlichkeitsdichten

Die Beziehung des aktuellen Zustands zum Folgezustand, gegeben durch
das Systemmodell (14.1), lässt sich auch durch die Transitionsdichte

fT
k (xk+1|xk, ûk, dk) =

∫
Rn

δ
(
xk+1 − ak(xk, ûk, wk, dk)

)
fwk (wk)dwk

beschreiben, wobei δ die n-dimensionale Dirac-Delta-Distribution be-
zeichnet. Aufgrund des unbekannten, aber begrenzten Parameters dk ∈
Dk kann der Zustandsübergang nicht durch eine eindeutige Transitions-
dichte charakterisiert werden. Vielmehr parametrisiert dk eine Menge

FFFT
k =

{
fT
k (xk+1|xk, ûk, dk)

∣∣ dk ∈ Dk}
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möglicher Transitionsdichten. Jedes Element dieser Menge kann offen-
sichtlich die ”richtige“ Transitionsdichte darstellen. Folglich wird das
Chapman-Kolmogorow-Integral

fp
k+1(xk+1) =

∫
Rn

fT
k (xk+1|xk, ûk, dk)f e

k (xk) dxk

zur Berechnung der prädizierten Wahrscheinlichkeitsdichte von xk+1

für jedes Element in FFFT
k ausgewertet. Dadurch ergibt sich eine Menge

prädizierter Dichten FFFp
k+1 für den Zustand xk+1.

Entsprechend führt die Likelihood

f(ŷ
k
|xk, ek) =

∫
Rn

δ
(
ŷ
k
− hk(xk, vk, ek)

)
fvk (vk) dvk ,

die sich aus der Messgleichung (14.2) ergibt, aufgrund des unbekannten,
begrenzten Fehlers ek zu einer Menge

FFFL
k =

{
f(ŷ

k
| · , ek)

∣∣ ek ∈ Ek}
möglicher Likelihoods. Der bayessche Filterschritt wird dann element-
weise für die Menge FFFp

k prädizierter bzw. priorer Dichten und die Menge
FFFL
k der Likelihoods durchgeführt und ergibt die Menge

FFFe
k =

{
f e
k

∣∣∣ f e
k (xk) =

fp
k (xk) · fL

k (xk)∫
Ω
fp
k (x) · fL

k (x) dx

für alle xk ∈ Ω, fL
k ∈ FFFL

k , f
p
k ∈ FFF

p
k

}
geschätzter Wahrscheinlichkeitsdichten für den Zustand xk, wie in
Abb. 14.1 veranschaulicht.

Insgesamt beruht dieses Verfahren auf einem allgemeineren
Verständnis des Wahrscheinlichkeitsbegriffs. Die Charakterisierung
der stochastischen Größe xk wird nicht mehr als eindeutig angenommen,
sondern durch eine Menge von Wahrscheinlichkeitsdichten beschrieben.

2.2 Konvexität und Intervallwahrscheinlichkeit

Eine konvexe, abgeschlossene Menge von Wahrscheinlichkeitsverteilun-
gen bzw. -dichten, welche eine Zufallsgröße charakterisiert, heißt Credal
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Abbildung 14.1: Elementweise Verarbeitung der Dichten.

State [7, 8]. In der Theorie der Intervallwahrscheinlichkeit [9, 10] werden
diese Mengen auch Struktur genannt. Die Funktionenmengen im vorigen
Abschnitt sind zwar im Allgemeinen nicht konvex, sie beschreiben jedoch
die gleichen Intervalle von Wahrscheinlichkeiten für jedes Ereignis wie ihr
konvexer Abschluss. D.h., eine derartige MengeFFF , auch Vorstruktur oder
erzeugende Menge genannt, und ihr konvexer Abschluss clos{conv{FFF}}
ergeben die gleiche Wahrscheinlichkeitsbewertung. Genauere Untersu-
chungen zu Schätzverfahren mit Mengen von Wahrscheinlichkeitsdichten
und zur Konvexität sind in [11] dargelegt.

3 Kalman-Filter für ellipsoidale Mengen

Ein weitbekanntes bayessches Schätzverfahren ist das Kalman-Filter [1],
welches lineare System- und Messmodelle betrachtet. Zudem werden die
Rauschgrößen wk und vk als unabhängig voneinander angenommen. Im
Falle von Normalverteilungen kann die Zustandsschätzung dann eindeu-
tig durch Erwartungswert x̂ ∈ Rn und Kovarianzmatrix C ∈ Rn×n be-
schrieben werden. Um unbekannte, aber begrenzte Unsicherheiten einzu-
beziehen, wird das lineare Systemmodell

xk+1 = Ak xk + Bk (ûk + wk + dk)
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um die Fehlergröße dk und das Messmodell

ŷ
k

= Hk xk + vk + ek

um ek erweitert, welche sowohl voneinander als auch von wk und vk
unabhängig sind. Folglich beeinflussen die mengenbasierten Fehler nur
den Schätzwert, nicht aber die Berechnung der Kovarianzmatrix. Als
eine besonders geeignete Darstellungsform dieser Fehlergrößen erweisen
sich ellipsoidale Mengen. Jede Größe kann dann durch eine Menge

E(ĉ,X) :=
{
x ∈ Rn | (x− ĉ)TX−1(x− ĉ) ≤ 1

}
mit Mittelpunkt ĉ und nichtnegativ definiter Matrix X repräsentiert wer-
den, d.h. dk ∈ E(0,Uk) und ek ∈ E(0,Yk). Ebenso wird der Zustand
durch ein Ellipsoid E(ĉk,Xk) beschrieben. Durch diese Mengendarstel-
lung gestaltet es sich einfach, affine Transformationen

AE(ĉ,X) + b = E(A ĉ+ b,AXAT) (14.3)

zu berechnen. Die Berechnung einer Minkowski-Summe, der element-
weisen Addition zweier Ellipsoide, ergibt im Allgemeinen kein Ellipsoid
mehr, allerdings lässt sich durch

E(ĉ1,X1)⊕ E(ĉ2,X2) ⊆ E(ĉ1 + ĉ2,X(p))

mit

X(p) = (1 + p−1)X1 + (1 + p)X2, p > 0 (14.4)

leicht eine äußere Approximation in Form eines Ellipsoids berechnen.
Der Parameter p kann so bestimmt werden, dass das Volumen oder die
Länge der Halbachsen der äußeren Approximation minimal ist [4]. Mit-
tels der Gleichungen (14.3) und (14.4) lässt sich nun ein verallgemei-
nertes Kalman-Filter für ellipsoidale Mengen herleiten. Die resultieren-
den Berechnungsschritte sind in Abb. 14.2 zusammengefasst. Die genaue
Herleitung des Verfahrens wird in [12] beschrieben. Offensichtlich las-
sen sich die Mittelpunkte ĉpk und ĉek im Prädiktions- bzw. Filterschritt
durch die bekannten Berechnungsvorschriften bestimmen. Der Unter-
schied dieses neuen Verfahrens zum Standard-Kalman-Filter besteht in
der zusätzlichen Berechnung der Matrizen Xp

k bzw. Xe
k. Schließlich wird
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der unbekannte, aber amplitudenbegrenzte Fehlereinfluss also durch Xp
k

bzw. Xe
k und die stochastische Unsicherheit durch Cp

k bzw. Ce
k charak-

terisiert.
Die Menge von Erwartungswerten E(ĉpk,X

p
k) bzw. E(ĉek,X

e
k) mit der

Kovarianzmatriz Cp
k bzw. Ce

k beschreibt eine Menge von verschobenen
Gaußdichten. Es handelt sich also um ein Schätzverfahren mit Mengen
von Dichten, wie in Abschnitt 2 dargelegt.

4 Systematische Beschreibung von Unsicherheiten durch
Mengen von Wahrscheinlichkeitsdichten

Mit Hilfe der vorgestellten Verallgemeinerung rein stochastischer
Schätzverfahren ist es möglich, Störeinflüsse bei der Systemmodellie-
rung differenzierter zu betrachten. Unsicherheiten, deren Statistik un-
bekannt ist oder die sich gar nicht stochastisch charakterisieren lassen,
können nun systematisch berücksichtigt werden. In diesem Abschnitt sei
ein Überblick über Situationen gegeben, in denen sich eine Unterschei-
dung zwischen stochastischen und mengenbasierten Fehlern als sinnvoll
erweist.

4.1 Berücksichtigung von systematischen Fehlern

Systematische Fehler beschreiben Störungen und Unsicherheiten, die
nicht durch wiederholte Beobachtung im Mittel verschwinden. Beispie-
le für solche Fehler sind Fehler im Sensor, wie fehlerhafte Kalibrierung,
Defekte, Fehler des Agenten, wie falsches Ablesen der Messinstrumente,
Fehlinterpretation der Ergebnisse, unbekannte Störungen oder unvoll-
ständiges a-priori-Wissen. Diese Fehlereinflüsse lassen sich nicht durch
mehrmaliges Messen eliminieren und bleiben somit als Abweichung im
Schätzergebnis bestehen. Es handelt sich also um unbekannte, aber im
Allgemeinen begrenzte Störeinflüsse, daher bieten sich Mengen zur Be-
schreibung dieser Fehler an.

Bei Verwendung rein stochastischer Modelle wird jedoch häufig ver-
sucht, einen solchen Fehler mitzuschätzen. Zum einen bedeutet dies, dass
eine Wahrscheinlichkeitsverteilung für den systematischen Fehler ange-
nommen werden muss, und zum anderen führt dies oft zu einem erheb-
lich höheren Rechenaufwand, da z.B. lineare Modelle nichtlinear werden
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Abbildung 14.2: Schema des Kalman-Filters für ellipsoidale Mengen von Er-
wartungswerten.
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ak(xk)

R(xk)

x̂e
k

Abbildung 14.3: Approximation durch Taylorreihen-Approximation erster
Ordnung am Schätzwert x̂e

k.

können. Naheliegend ist es daher, im System- und Messmodell zwischen
stochastischen und systematischen Fehlertermen zu unterscheiden. Mit
den in den vorigen Abschnitten beschriebenen Schätzverfahren können
beide Fehlerarten nun simultan behandelt werden.

4.2 Abschätzung von Linearisierungsfehlern

Bei nichtlinearen System- und Messabbildungen wird häufig das Erwei-
terte Kalman-Filter (EKF) eingesetzt. Hierbei werden das System- und
Messmodell um den prädizierten bzw. geschätzten Zustand linearisiert.
Das EKF verwendet eine Taylorreihen-Entwicklung

xk+1 = ak(xk) + wk = ak(x̂e
k) +

∂ak
∂xk

∣∣∣∣
xk=x̂e

k

(xk − x̂e
k) +R(xk) + wk

der Abbildungen, wobei das Restglied R(xk), der grün markierte Bereich
in Abb. 14.3, vernachlässigt wird. Deshalb kann das EKF bei starken
Nichtlinearitäten schlechte bzw. inkonsistente Ergebnisse liefern [13]. In
der Regel führt dies zu einem Bias der Schätzungen, d.h. zu einem sys-
tematischen Fehler.

Um diesen Linearisierungsfehler zu berücksichtigen, kann eine systema-
tische Abschätzung des Restgliedterms vorgenommen werden. Betrachtet
man einen Konfidenzbereich der Schätzung, z.B. die 3σ-Grenze, so lässt
sich das Restglied über dieser Menge abschätzen. Dadurch lässt sich der
Term R(xk) als amplitudenbegrenzter Fehler auffassen und kann durch
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Abbildung 14.4: Darstellung von Unsicherheiten: (a) Störung ist als Addition
zweier Zufallsvariablen gegeben. (b) Störung ist durch eine Kombination einer
Zufallsvariable und einer Menge gegeben.

eine Menge beschrieben werden. Zur Zustandsschätzung kann nun das
Kalman-Filter für Ellipsoide aus Abschnitt 3 verwendet werden.

4.3 Approximation komplizierter Wahrscheinlichkeitsdichten

Ein häufiges Problem beim Einsatz eines allgemeinen bayesschen
Schätzers besteht in dem steigenden Aufwand für die Darstellung und
Berechnung der Dichten. Dieser Aufwand kann durch verschiedene Ap-
proximationen, wie z.B. Linearisierung oder eine Reduktion der Anzahl
der Komponenten von Gaußmischdichten, begrenzt werden.

Anstatt durch eine Approximation Fehler einzuführen, erlaubt die Ver-
wendung von Mengen von Wahrscheinlichkeitsdichten eine konservative
Abschätzung komplizierter Dichten. Unter der Annahme, dass sich die
stochastische Unsicherheit additiv z.B. in einen normalverteilten Term
vk und einen beliebig verteilten, aber amplitudenbegrenzten Störterm rk
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aufteilen lässt, kann rk durch eine mengenbasierte Unsicherheit εk ∈ E
verallgemeinert werden. Abbildung 14.4 verdeutlicht diese Vereinfachung.
Die komplizierte Wahrscheinlichkeitsdichte in Teilabbildung (a) setzt sich
aus einer normalverteilten und einer amplitudenbegrenzten Zufallsvaria-
blen zusammmen. In Teilabbildung (b) wird der amplitudenbegrenzte
Anteil durch eine Menge verallgemeinert, so dass sich schließlich eine
Menge von verschobenen einfachen Gaußdichten ergibt. Durch diese Vor-
gehensweise werden Approximationsfehler vermieden. Der einzige Infor-
mationsverlust besteht in der Verteilung des Fehlers rk innerhalb der
Amplitudengrenzen.

5 Schlussfolgerung

In dieser Arbeit wurde ein Schätzer für Mengen von Wahrscheinlichkeits-
dichten vorgestellt. Neben der allgemeinen Verarbeitung von Mengen von
Dichten wurde ein Filter beschrieben, welches effizient ellipsoidale Men-
gen von Schätzwerten verarbeitet. Da die Formeln hierfür sehr einfach
sind, ist die Verwendung dieses Schätzers direkt möglich.

Die Verarbeitung von Mengen von Wahrscheinlichkeitsdichten
ermöglicht nun verschiedene Ansätze, die mit rein stochastischen
Schätzern nur mit großem Aufwand möglich sind. Mengen von Dich-
ten erlauben die Beschreibung sowie die Unterscheidung von systemati-
scher und stochastischer Unsicherheit durch die Kombination von Wahr-
scheinlichkeitsdichten und Mengen zu Mengen von Dichten. Kompli-
zierte Dichten lassen sich mit dem vorgestellten Ansatz durch Mengen

”einfacher“ Dichten darstellen und verarbeiten. Der Verarbeitungsauf-
wand kann hierbei durch entsprechende Abschätzungen des systemati-
schen Fehlers wesentlich geringer sein. Weiterhin ermöglichen Mengen
von Dichten eine einfache Berücksichtigung von Linearisierungsfehlern,
wie sie in manchen stochastischen Schätzern, wie dem EKF, auftreten.
Dadurch lässt sich die entstandene Modellabweichung durch eine Menge
abschätzen und man erhält eine Menge von Normalverteilungen, wel-
che den Linearisierungsfehler berücksichtigt und die exakte Schätzung
beinhaltet. Insgesamt erlaubt dieses Verfahren eine systematische Be-
handlung stochastischer und mengenbasierter Unsicherheit, kann so den
stochastischen Teil der Zustandsschätzung wesentlich vereinfachen und
die Robustheit des Schätzers erhöhen.



178 B. Noack et al.

Literatur

1. R. E. Kalman,
”
A New Approach to Linear Filtering and Prediction Pro-

blems“, Transactions of the ASME – Journal of Basic Engineering, S.
35–45, 1960.

2. A. Doucet, Hrsg., Sequential Monte Carlo methods in practice, Ser. Stati-
stics for engineering and information science. New York: Springer, 2001.

3. F. C. Schweppe, Uncertain Dynamic Systems. Prentice-Hall, 1973.
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