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Abstract

We present a novel method called Kernel-SME filter for tracking multiple targets when the associ-
ation of the measurements to the targets is unknown. The method is a further development of the
Symmetric Measurement Equation (SME) filter, which removes the data association uncertainty of
the original measurement equation with the help of a symmetric transformation. The underlying
idea of the Kernel-SME filter is to construct a symmetric transformation by means of mapping the
measurements to a Gaussian mixture. This transformation is scalable to a large number of targets
and allows for deriving a Gaussian state estimator that has a cubic time complexity in the number
of targets.

1. Introduction

A main challenge in multiple target tracking [1] is that the association of measurements to
targets is unknown. In this context, a variety of different multiple target tracking methods has
been developed. For example, the Joint Probabilistic Data Association Filter (JPDAF') [2] enu-
merates all feasible association hypotheses in order to compute a Gaussian approximation of the
posterior density of the target states. Unfortunately, the number of possible association hypotheses
grows exponentially with the number of targets so that the tracking of a large number of closely-
spaced targets becomes a serious challenge. The Probability Hypothesis Density (PHD) filter [3, 4]
maintains the first moment of the multi-target posterior random set called PHD. By this means,
association hypotheses are not explicitly enumerated, i.e., data association is performed implicitly.
The PHD, however, contains significantly less information than the full joint state vector of all
single targets, e.g., the correlations between targets are lost.

This article is about an implicit data association approach named Symmetric Measurement
Equation (SME) filter [5, [6]. The SME filter removes the data association uncertainty from the
original measurement equation using a symmetric transformation. By this means, the combinatorial
complexity of the data association problem can be bypassed. Unfortunately, existing SMEs suffer
from strong nonlinearities and lack an intuitive semantic so that existing SME filters are not
competitive to established approaches such as JPDAF and PHD filters.

In this article, we introduce the so-called Kernel-SME filter that can be seen as an extension of
the SME approach. The basic idea is to define a symmetric transformation that maps the set of
measurements to a function, i.e., a Gaussian mixture, and deterministic sampling of this function
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gives the symmetric transformation. In this manner, a data-dependent, i.e., nonparametric, sym-
metric transformation is obtained. The Kernel-SME has an intuitive semantic and it is suitable for
a large number of closely-spaced targets due to a cubic time complexity. Hence, the advantages of
an implicit data association method are exploited while having the full joint density of the multiple
target state available. Additionally, there is an intriguing connection to the PHD filter that renders
the Kernel-SME filter to an in-between of the PHD filter and the JPDAF. Simulations demonstrate
that the Kernel-SME filter may outperform the PHD filter for a large number of targets.

2. Problem Formulation

We consider the tracking of multiple targets based on noisy measurements, where the target-
to-measurement association is unknown. Specifically, we make the following assumptions:

A1 The number of targets is known and fixed.
A2 Each target gives rise to exactly one single measurement per time instant.

A3 There are no false measurements, i.e., each measurement originates from a target.

The n-dimensional single target state vectors are denoted with Q,lﬁ, el gfy , where k denotes the
discrete time and N is the number of targets. The joint target state z;, = [(z})7,. .., (gg)T}T €

IR™¥ comprises all single target states.

2.1. Measurement Model

At each time step k, a set of N measurements {yi, ey yg } is available. Each measurement is
related to a single target through the linear measurement model

y O = Hiz + v}, (1)

where 7, € II,, is a permutation in the symmetric group II,, that specifies the unknown target-
to-measurement assignment and gfc is additive zero-mean white noise with covariance matrix 3 ;.
The single target measurement equations can be composed to an overall measurement equation

vV [l z}] [o
P = S S (2)
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where y, == [(y))T,..., (y™)T| and Py, (y,) permutes the single measurements in y, according
I L 2k kAL 2k
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2.2. System Model

The temporal evolution of a single target is specified by a linear motion model

! 11 !
Ty = Ajzy Wy (3)

where AfC is the system matrix and Qi is additive white noise with covariance matrix X}’,. The
single target motion models can be composed as

1 1 1 1
L1 Ay L Wi
: = - S I el I . (4)
N N N N
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2.3. Recursive Gaussian Estimator

We aim at a recursive Gaussian state estimator for the multi-target state vector z;, i.e., a
Gaussian approximation of the posterior probability density function for x;, given the measurements

Yi:={y. .y}

play | Yi) = N (i — s =f) (5)
is to be computed, where ﬁi is the mean and %7, the covariance matrix of the Gaussian.
The time update step determines p(z; | Yip_1) =N <gk - H’é‘kil; Zilk_1> based on the previous

density p(z;_; | Yr—1). Due to the linear system model, the prediction can be performed according
the Kalman filter formulas

Hi“ﬂ—l Ay ‘Hf;_l , and (6)
Shk—1 = ASE (AT + 3 (7)

In the measurement update step, the prediction N <gk — H‘z‘k_l; Ei‘k_1> is updated with the

stacked measurement vector y,- How to perform the measurement update under incorporation of
the data association uncertainty is the objective this article.

3. SME-Filter

This section is about the Symmetric Measurement Equation (SME) filter as introduced by
Kamen [5][6]. The basic idea of the SME filter is to remove the association uncertainty j, from the
measurement equation by applying a symmetric transformation to the measurement vector.

Definition 1. A transformation S(y, ) of the measurement vector y, with S: RN "™ — RN is
called symmetric if

S(y,) = S(Pr(y,)) (8)
for all 7 € Il .



Remark 1. Of course, the symmetric transformation should not remove information, i.e., it should
be injective up to permutation.

Example 1. The Sum-Of-Powers [B, [0 [7, 8] transformation for two targets and one-dimensional
measurements yl,l€ and y% is given by

1,217 1 2 (,1)2 0217
S (b w]") = [wh+ uh ()" + WD)
The application of a symmetric function S to yields

S = 8(Pr,(y,) = SHy -z, + vy) (9)
—_——
=5(y,)
where s, is a pseudo-measurement constructed from original measurement vector Y, The pseudo-
measurement s; can be determined without knowing 7 due to the symmetry property of S. Hence,
the data association uncertainty has been removed, however, instead a nonlinear measurement
equation is obtained. Based on the nonlinear measurement equation @, nonlinear Bayesian state
estimators such as the Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) [7, §]
can be used for performing inference.
Although the SME approach is a very neat way for dealing with data association uncertainties,
it comes with some challenges:

1.) The generalization of existing symmetric transformations, i.e., the Sum-Of-Powers and [5, [0,
7,18, 9], to states with dimension larger than 1 is nontrivial due to the so-called ghost target
problem [7], [§] resulting from non-injective transformations. As a consequence, tedious and
highly nonlinear symmetric functions that have no intuitive, physical meaning are obtained.
Additionally, these symmetric transformations are unsuitable for larger target numbers as
the order of the involved polynomial increases with the number of targets, i.e., for 10 targets
polynomials up to order 10 are required.

2.) Due to 1.), the resulting nonlinear estimation problem is very difficult. As there is non-
additive Gaussian noise in @, the EKF cannot be applied directly and an approximate
measurement equation with additive noise has to be derived first. The derivation of the
additive noise term is usually complicated and time-consuming. Besides, Linear Regression
Kalman Filters (LRKFs) such as the UKF [7, [§] do not give satisfying results due to the
strong nonlinearities and numerical instabilities.

4. Kernel-SME Filter

The basic idea of the Kernel-SME filter is to interpret the measurements as the parameters of
a function, where the function is a sum of kernel functions that are placed at the measurement
locations. We focus on Gaussian kernels, nevertheless other types of kernels may also be reasonable.

Definition 2 (Kernel Transformation). Let HY denote the space of all n-dimensional Gaussian
mixtures with N components. The kernel transformation S¥ : RV — HY | which maps Y, €

RN to a function by < HY, is defined as

S (y,) = Fy, with (10)



y, € R™Y Fy €Hn

Figure 1: Hlustration of the Kernel-SME.

N
=Y N (é—gis EK) : (11)
=1
where N (z — y!; £F) is a Gaussian kernel located at y! with kernel width Z%.
Lk Zk

Remark 2. The transformation is symmetric due to Fy ( ) = Fp.(y, y(z) for all z € IR™.

Furthermore, is injective up to permutatlon due to the 1dent1ﬁable of the parameters of a
Gaussian mixture dens1ty [10]. Hence, there is no ghost target problem.

The transformation ([10)) has an intuitive semantic: The set of measurements is interpreted as a
continuous image, i.e. hlgh values of Fy, ( ) indicate a high measurement concentration. Of course,

the choice of a suitable kernel width ZK in is essential. It should be chosen similar to the
measurement noise covariance in order to ensure that the support of the kernel covers the noise-free
measurement.

The following theorem describes an insightful, inherent relationship between the transformed
measurements SX (gk) and the PHD of the stacked measurements y, that is defined as

S pyw) - (12)

where Dy (y) is the PHD function and Pyi (y) is the probability density of gz

Theorem 1. The expected kernel transformation of the stacked measurements Y, coincides with

the convolution of the PHD with the kernel, i.e. E{SK Y, } fD (s — 2z EK) ds

PROOF. According to [11], the following holds
B{R, (9} = [ R @)ty = [ [ SD6-1) N (=5 5°) deply,)ay,
://Zé(t—yZ)p(yk)dyk-N( s; ©F) dt—/D N(t—s £F)dt .



In order to apply standard nonlinear estimation techniques for determining the estimate ,

we propose to evaluate the function ng (z) at specific test vectors Q}c, ... ,ch\f”, i.e., we define a
discretized version of as follows
Iy, (a3)
K .
S@i,...,gﬁ“ (gk) - : N (13)
F, Y, (a;®)

How to choose the number and locations of the test vectors is discussed in Section [4.1]
The application of to gives the following symmetric measurement equation

_ oK _ oK .
Sk = Sgllw_._@kzva (yk) = Sg}c’._&ga (Hi -z +v1) (14)
where s;, is the pseudo-measurement.

We derive a Linear Minimum Mean Squared Error (LMMSE) estimator [12]. For a given pre-

diction of the state Hﬁ b1 with estimation error Zil x_1> the updated estimate Ky and X7 according
to (|14]) is given by the Kalman filter formulas

ﬁi = Hiwc—l + 2%5(2}28)—1 <§k _ HZ) , and (15)
5= S - SRS (16)
where

o i is the predicted pseudo-measurement,
e X7° is the covariance between the state vector x; and the pseudo-measurement s, , and

e Y7° is the variance of the pseudo-measurement s;.

Intuitively, the above filter minimizes the kernel distance between the PHD of the predicted
measurements and the measurements. In this context, see also [11].

Closed-form expressions for the above moments are derived in Section With these expres-
sions, the computational complexity of the Kalman filtering update and is only cubic
in the number of targets: The mean My can be computed in quadratic time, and both the cross-
covariance matrix 37° and covariance matrix Xj° have a cubic time complexity (see Section .
Hence, the overall time complexity of the measurement update is cubic.

4.1. Selecting the Test Vectors

The locations of the test vectors are crucial. Fortunately, there is an intuitive interpretation: As
the test vectors can be seen as deterministic samples of the Gaussian mixture , there is a strong
relationship to deterministic sampling problems that occur for example in the UKF [13]. Due to

this analogy, we propose to add 2 -n test vectors for each Gaussian component N (g — yfk; vK ) in
according to the UKF [13], i.e., N, =2-n - N with

ai Tt = yfk—i—(\/nZ}K)' , and (17)

)

Q§€+2(i—1) _ y2_< /nEK>. (18)
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fori=1,...,Nand [l =1,...,n, where (\/nZ‘K)i denotes the i-th column of /nX%. For diagonal
YK the test points lie on the principal components of .

4.2. Closed-Form Expressions

The moments required for the measurement update step can be calculated in closed form.
Essentially, the derivations are straightforward as they can be performed with the help of the
Kalman filtering formulas. For this purpose, we define the abbreviation

Py = N (@2 —Hjp?; H S, (H)T + 57 + EK)

T
The mean of the predicted pseudo-measurement HZ — [E217 o HZNQ} s
N .
Bz,i = E{ng(g%) |yk—1} = Z/N (Q;c — Hé@% +Q§€; EK) .
=1

N
N(gk — Moy’ Eiﬂc—l) N (v, = 0; 39) dzj dvf, = Py . (19)
=1

The cross-covariance matrix between the multi-target state vector and the pseudo-measurement
becomes 7 = [S7°1, ..., X7 ] with

i = B{ay, - Fy, (@) | Ve }—pf - g, where

(%)

N
(x) = Z/l’k ‘N (Qi; — Hizl + 0k, EK) N (gk _Hz\kq; Ez‘k_1> N (v, — 0; 2Y) day, dul,
=1

N
= Nﬁilk_l + Z P“ka(g}; — kaﬁil) and
=1

Kl — | %1m NN T THl . Hl nT Hl T EK PN -1 20
= | HEk—10 " Hhlk—1 k Kpe—1, (Hy) ™ + 20 + X% - (20)

The covariance matrix of the predicted pseudo-measurement >7° = Y%, i1 N, can be calcu-
p k k= )ig=1,..,Na
lated with

Sy = E{ng (a}) - Fy, (Qi) | yk—l} _Hi,i -ﬁ;j , where

~~

(xx)
N N ' '
(o) = 303 [ A7 (a Bk ks =)o (af ~ P+ s )N (- i3 Sie):
=1 m=1
N N N ' )
N (v = 0; }) day, duj, = (ZP@-,Z > Pj,m> + >N (af — afs 0.55%)
=1 m=1,m#l =1

N (S(af +af) - Hpets HESE, L (HDT +5%) . (21)



8 8 x
o X ox
6 . 6 5
e & e
4 o 4y ey
> - >~ N x% x
2 o, & 2] R g T
0 .» ° UNS
20 2 4 6 8 220 2 4 6 8 0 5 1015
X X time step k
(a) Initial target positions (big (b) Example measurements. (¢) Mean OSPA Error:
dots) and an example ran- Kernel-SME ~ (blue)  and
dom walk taken by the targets GM-PHD (magenta) filter.

(small dots).

Figure 2: Simulations: Setting and results for the first 15 time steps.

5. Evaluation

The performance of the Kernel-SME filter is demonstrated with respect to the Gaussian mixture
implementation of the PHD filter (GM-PHD) [4]. For this purpose, eight two-dimensional targets
that evolve according to a random walk model are considered (see Fig. , ie, N = 2 and
n = 8 with parameters Hi = AfC = Iy, 3¥ = 0.1, and X% = 0.1, where I, is the identity matrix
of dimension 2. The measurement noise is rather high compared to the distance of the targets.
The first estimate is initialized with the covariance matrix 3§ = 0.5 - I;¢ and the mean HS is
sampled randomly from N (Z, — 0; X¥), where Z, denotes the true target position at time instant
0. The GM-PHD filter maintains a Gaussian mixture with 50 components in order to represent
the PHD. The parameters for the Gaussian mixture reduction have been optimized for the best
results and the mixture components with the largest weights serve as point estimates for the single
targets. As the PHD filter itself does not maintain target labels, the performance of both filters is
assessed with the Optimal Sub-Pattern Assignment (OSPA) metric [14] that ignores target labels.
The averaged OSPA distance over 30 Monte Carlo runs is depicted Fig. The Kernel-SME filter
significantly outperforms the PHD filter in this scenario. The reason is that the PHD tends to merge
closely-spaced targets. The simulations demonstrate that the Kernel-SME filter is advantageous in
particular settings. However, please note that the PHD filter is more general than the presented
Kernel-SME filter version, e.g., the PHD filter is capable of estimating the number of targets.

6. Conclusions

This article presented a novel type of SME filter that is based on a mapping from the set
of measurements to a Gaussian mixture. Intuitively, the filter recursively minimizes the kernel
distance between the measurements and the PHD of the predicted measurements. By this means,
shortcomings of existing SME approaches are remedied so that Kernel-SME filter is a serious
alternative to traditional tracking algorithms such as JPDAF and PHD filters. The Kernel-SME
filter is in particular advantageous for a large number of closely-spaced targets. Future work focuses



on extending the Kernel-SME to clutter measurements and detection probabilities (see A2 and A3

in Section .
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