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Abstract

In this paper, we address the problem of controlling a system over an unreliable connection that
is affected by time-varying delays and randomly occurring packet losses. A novel sequence-based
approach is proposed that extends a given controller designed without consideration of the network-
induced disturbances. Its key idea is to model the unknown future control inputs by random
variables, the so-called virtual control inputs, which are characterized by discrete probability density
functions. Subject to this probabilistic description, the actual sequence of future control inputs is
determined and transmitted to the actuator. The high performance of the proposed approach is
demonstrated by means of Monte Carlo simulation runs with an inverted pendulum on a cart and
by a detailed comparison to standard NCS approaches.

1. Introduction

In networked control systems (NCS), communication between components of the control loop can
be realized via a communication network instead of a transparent connection [1, 2]. This system
architecture offers many advantages, such as simple installation and maintenance, as well as a
high flexibility in the system structure. Therefore, NCS can already be found in a wide range of
applications, e.g., unmanned vehicles [3], telepresence systems [4], or mobile sensor networks [5].

However, it is well known that compared to a transparent connection, the presence of a commu-
nication network in the control loop decreases the quality of control or even destabilizes the system
[6, 7, 8]. This is mainly caused by time-varying transmission delays and randomly occurring packet
losses, limited bandwidth of the communication channel, or quantization errors. Consequently,
control methods for NCS have to consider both communication and control aspects.

Our approach is based on the well-established control technique, named sequence-based control,
which does not transmit just a single control input but a whole sequence of reasonable inputs for the
future time steps. This idea takes advantage of the property of modern communication networks,
in which data is transmitted in large time-stamped packets. The successfully transmitted sequences
are stored in a buffer at the actuator and a specific selection logic enables that some reasonable
inputs can be passed on to the plant at every time step.

The main problem of this procedure is that the controller actually has to know the control
inputs applied by the actuator in the past and in the future, in order to be able to determine the
current optimal sequence of control inputs. However, this demand is obviously not realizable, due
to unpredictability of the network-induced delays.
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Figure 1: Considered NCS architecture. Controller and actuator are connected through a communication network,
whereas the link between sensor and controller is transparent. For compensation of time delays and packet losses, a
controller is employed, which transmits a whole sequence Uk of optimal control inputs instead of just a single one.

1.1. Related Work

In [9] and [10], a deterministic protocol is proposed to guarantee that the sequence of control
inputs used by the controller for state predictions coincides with the sequence applied by the
actuator. By enforcing this property, the so-called prediction consistency, there are some significant
drawbacks. Especially in the case of long time delays, the controller is frequently in the so-called
recovery mode, in which the actuator rejects inconsistently predicted sequences, even when they
are based on recent measurements.

In [11], a scenario-based NCS controller is proposed calculating the optimal control inputs for
each possible delay of the previously transmitted sequences. Then, the set of control sequences is
transmitted to a smart actuator, which selects the correct sequence. Obviously, the complexity of
this approach increases strongly when longer time delays occur.

Many sequence-based NCS controller neglect communication aspects and send at every time
step a sequence of inputs resulting from an open-loop control problem exclusively depending on the
current system state, e.g., see [12] or [13]. Consequently, these approaches do not incorporate into
the control decision the control inputs sent by the controller in the past and stored in the buffer
of the actuator. But, these inputs also have potentially an effect on the future evolution of the
system.

A feedback controller designed for systems without network-induced disturbances is employed
in [14] for determining a control input sequence. Along with a deterministic model of the plant,
future states and therefore, future control inputs are predicted, which are then transmitted in a
control input sequence to the actuator.

1.2. Key Idea

In this paper, we extend any given state feedback controller designed without considering
network-induced disturbances. The novel idea is to model the future inputs by random variables,
named virtual control inputs. These random variables are characterized by discrete probability
density functions over potential control inputs, which are derived from the data transmitted by the
controller in the past. Based on this probabilistic description representing the best knowledge of
the controller about the situation at the actuator, a sequence of control inputs for the future time
steps is determined.

1.3. Notation

Throughout the paper, random variables a are written in bold face letters, whereas deterministic
quantities a are in normal lettering. Furthermore, the notation a ∼ f(a) means that the random
variable a is characterized by its probability density function f(a). A vector-valued quantity a is
indicated by underlining the corresponding identifier and matrices are always referred to with bold
face capital letters, e.g., A. The notation ak refers to the quantity a at time step k. Furthermore,
ak|t denotes the quantity a at time step k based on information up to time t. The term 0m×r refers
to a matrix with dimension m × r with all entries equal to 0 and 0r is an abbreviation for 0r×r.
Finally, the term 0r means 0r×1 and In denotes the identity matrix of dimension n × n.
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1.4. Outline

The remainder of the paper is organized as follows: In the next Section, the problem is defined
and the assumptions made are listed. Then, the proposed controller scheme for NCSs is described
in detail and stability properties are examined. Section VI presents simulation results with an
inverted pendulum and compares the proposed approach to standard NCS techniques. A summary
and an outlook on future work concludes the paper.

2. Considered Problem

Throughout the paper, we consider a discrete-time linear dynamic system described in state-space
form via

xk+1 = Axk + Buk +wk , (1)

where xk ∈ R
s denotes the system state at time step k and uk ∈ R

n the control input applied by the
actuator. Note that due to time delays and packet losses in the network, uk is a random variable.
The system noise is subsumed by wk ∼ fw(wk) and is assumed to be a zero-mean Gaussian noise
process. Furthermore, the system matrices A ∈ R

s×s and B ∈ R
s×n are assumed to be known.

The components of the control loop are time-triggered, synchronized, and have identical cycle
times. Furthermore, we assume that the actuator does not have sufficient calculation capacity to
perform local control.

In this paper, we restrict our considerations to the case, where the communication network is
solely present in the controller-to-actuator link. We further assume that the controller has perfect
information about the current system state xk of the plant, i.e., the system state is completely
measurable by the sensor and the connection between sensor and controller is perfect.

The employed network is capable of transmitting large time-stamped data packets and does
not provide acknowledgements for successfully transmitted data as in so-called UDP-like protocols.
The data transmission might be subject to time-varying and possibly unbounded1 delays, modeled
as a discrete random process τk ∈ N. The realizations of this process describe how many time steps
a packet generated in time step k will be delayed until it is received. It is assumed that τk ∼ f τ (τ)
is a white stationary process that is independent of wk and that the probability density function
f τ (τ) is known.

Finally, we assume that a controller with a linear state feedback control law

uk = L · xk (2)

is given that is designed without consideration of the network-induced disturbances. In the follow-
ing, we propose a scheme that extends this given controller in such a way that it can deal with
time delays and packet losses.

3. Sequence-based Control

In this section, we briefly review the general concept of sequence-based control as, e.g., used in
[15, 9, 12, 16, 17, 14], since our control approach presented in the next section is based on this
fundamental control concept.

In sequence-based control, a controller generates not just a single control input for the current
control cycle, but also control inputs for future N time steps (with N ∈ N). The whole control
input sequence is lumped into one data packet and sent over the network to the actuator. The
actuator is equipped with a buffer, in which the most recent control input sequence is stored, i.e.,
that sequence that has the highest time stamp among all received packets. Therefore, when a new

1By allowing the time-delays to be unbounded, packet losses are incorporated into the description of the random
delay processes since the loss of a packet corresponds to an infinite time-delay
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packet is received by the actuator, it is taken into the buffer if its time stamp is higher than the
one of the packet already stored in the buffer, otherwise it is neglected. Finally, in every time step,
the actuator applies the appropriate control input of the buffered sequence to the plant, i.e., that
control input of the sequence that corresponds to the current time step.

For the following derivations, we need some further notations. A control input sequence gen-
erated by the controller at time k will be denoted by Uk. An entry of that packet is denoted by
uk+m|k with m ∈ {0, 1, ..., N}, where the first part of the index (here: k + m) gives the time step,
for which the control input is intended to be applied to the plant. The second part of the index
(here: k) specifies the time step, when the control input was generated. For a packet of length
N + 1 generated in time step k, this gives

Uk = {uk|k, uk+1|k, . . . , uk+N |k} . (3)

For example, let us assume the controller packet Uk is received by the actuator at time step
k + τk with τk ∈ N. If none of the packets

Uk+1, Uk+2, . . . , Uk+τk
(4)

has been received by the actuator so far, then the buffer is overwritten with the entries of Uk and
the input uk+τk|k is applied to the plant. Otherwise, if the actuator has received any packet from
(4) until time step k + τk, say, e.g., Uk+i, for i = 1, . . . τk, Uk is neglected and uk+τk|k+i of the
buffered sequence Uk+i is applied.

Since we do not assume that the time delays are bounded, it may happen that the buffer runs
empty. In this case, the controller operates with a default input ud.

It is obvious that the control inputs applied by the actuator depend on the packet delays as
well as losses and, therefore, inherit the stochastic nature of the network. This gives rise to the
stochastic control approach discussed in the next section.

4. Sequence-based Control with Virtual Control Inputs

It should be obvious from the preceding section that in sequence-based control, control inputs from
packets sent in previous time steps may actively affect the future evolution of the plant. It therefore
seems only reasonable to take these old control inputs explicitly into account, when calculating new
control inputs, which is also the main idea of the proposed approach.

In the following, we derive in Sec. 4.1 a stochastic description of these already transmitted, but
possibly applied control inputs, that we call virtual control inputs. Then, utilizing the concept of
virtual control inputs, we design the controller in Sec. 4.2.

4.1. Virtual Control Inputs

In this section, we introduce the novel concept of virtual control inputs. To that end, we first
define the information set Ik that summarizes the information the controller can use at time step
k to calculate Uk. Considering causal controllers, the information set includes all measurements
and all control packets that were received and sent, respectively, until time step k. Furthermore,
the information set contains the information about the given feedback matrix L, the dynamics of
the system D given by Eq. (1), the buffering logic B of the actuator described in Sec. 3, and the
stochastic characteristics of the process and measurement noise, so that

Ik = {x0, . . . , xk, U0, . . . , Uk−1; L, D, B, fw(w), f τ (τ)} . (5)

Remark 4.1 The information that can be used by the controller, i.e., Ik, does not contain the
knowledge that the controller will sent control input sequences in future. This means that the
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Figure 2: Schematic illustration of the transmitted packets. Control inputs corresponding to the same time step are
vertically aligned. For example, the potential control inputs that could be applied by the actuator at time step k are
indicated by white rectangles. The last yellow entry is the default value that would be employed if the buffer runs
empty.

controller does not consider that in the next time step the state will be measured and a control
sequence will be generated and sent to the actuator. This is justified by the fact that the proposed
controller must not use this information for two reasons. First, the controller has to generate open-
loop control sequences since the actuator has no access to state measurements. Second, if an entry
of the control input sequence Uk+1 is applied by the actuator, it is not possible that a control input
of the sequence Uk will be applied afterwards. Therefore, the influence of future control sequences
Uk+1 (and following sequences) must not be considered in the generation of the control sequence
Uk.

Based on Ik, we define the virtual control inputs as follows.

Definition 4.1 (Virtual Control Inputs) A virtual control input uv
k+m|k ∼ f(uv

k+m|k) is a ran-

dom variable that characterizes the control input uk+m based on the information Ik (with k, m ∈ N).

Remark 4.2 It is important to distinguish 1) uk+m, that is a realization of the control input uk+m,
2) uk+m|k, that is an entry of the packet Uk and that describes the control input applicable at time
step k + m calculated by the controller at time step k, 3) the virtual control input uv

k+m|k, that is

a prediction of uk+m based on Ik, and 4) uv
k+m|k that is realization of uk+m.

To derive the probability density function f(uv
k+m|k) of the virtual control inputs uv

k+m, we note
that, based on the information set Ik, there is only a finite set of discrete values of control inputs
that could be applied by the actuator. This is illustrated in Fig. 2 for the case of N = 2, where
the control inputs possibly applied at time step k are marked by white rectangles. It should be
noted that, although this finite set of control inputs is discrete, the control inputs itself are over a
continuous domain. The structure of the uncertainty can formally be described by a Dirac mixture
density, so that it holds for the probability density functions of the virtual control inputs

f(uv
k+m|k) = α

(N−m+1)
k+m|k δ(uv

k+m|k − ud) +
N−m∑

i=0

α
(i)
k+m|k δ(uv

k+m|k − uk+m|k−i) ,

with

m ∈ {0, 1, · · · , N} ,
N−m+1∑

i=0

α
(i)
k+m|k = 1 ,

where δ() is the Dirac delta function and α
(i)
k+m|k are scalar weighting factors.
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Remark 4.3 Since we do not make the assumption that the delays are bounded, it can occur that
the actuator runs out of applicable control inputs. This is taken into account in f(uv

k+m|k) by the

term ud.

The weighting factors express the probability that the corresponding control input uk+m|k−i is
applied by the actuator, i.e.,

α
(i)
k+m|k = Prob(uk+m = uk+m|k−i|Ik) .

The control input uk+m|k−i is applied by the actuator if the sequence buffered in the actuator at
time step k+m has been generated by the controller k+m−(k−i) = m+i time steps ago. In other
words, uk+m|k−i is applied by the actuator if the age of the buffered sequence, i.e., the difference
between time step of generation and actual time step, at time step k + m is equal to m + i. In the
following, we denote the age of the buffered sequence at time step k by θk. With this notation it
holds that

α
(i)
k+m|k = Prob(θk+m = i|Ik) .

Therefore, the weighting factors can be interpreted as estimates of θk. It is shown in the appendix
that θk can be formulated as the state of a Markov chain (with state space {0, 1, 2, ..., N + 1}) that
is governed by the transition matrix P for that holds

P =














p(0, 0) p(0, 1) 0 0 · · · 0

p(1, 0) p(1, 1) p(1, 2) 0 · · · 0

p(2, 0) p(2, 1) p(2, 2) p(2, 3) · · · 0
...

...
...

...
. . .

...
...

...
...

...
... p(N, N+1)

p(N+1, 0) p(N+1, 1) p(N+1, 2) p(N+1, 3) · · · p(N+1, N+1)














, (6)

where the p(i, j) are equal to Prob (θk+1 = j|θk = i) and can be calculated by

p(i, j) =







0 for j ≥ i + 2 ,

1 −
i∑

r=0
qr for j = i + 1 ,

qj for j ≤ i .

Thereby, qi describes the probability of the event that a packet is delayed by i time steps. These
probabilities can easily be derived since the probability density function of the time delays of the

network connection are known. Arranging the weighting factors α
(i)
k+m|k in form of a vector

αk+m|k =
[

α
(0)
k+m|k, · · · ,α

(N−m+1)
k+m|k

]T
, (7)

it holds that

αk+m|k =

[

IN+2−m 0(N+2−m)×m

]

(Pm)T ·αk|k

Tr
(

diag
[[

IN+2−m 0(N+2−m)×m

]

(Pm)T ·αk|k

]) , (8)

where diag [s] denotes a matrix with the elements of the vector s on the diagonal and zeros every-
where else, and the term Tr (S) denotes the trace of S. The term in the numerator represents a
m-step future prediction of θk, where only the first N +2−m elements are kept. The other elements
describe the probability that future control inputs are applied, which are based on information that
is not available, e.g., Ik+1 and is therefore not used. The denominator normalizes the extracted
subset of the predicted vector so that it sums up to one.

According to Eq. (8), if αk|k is known, the other weighting factors αk+1|k · · ·αk+N |k can be
derived by means of the transition matrix P. To derive αk|k we note that the state xk can also be
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interpreted as the continuous-valued outputs of a Hidden Markov Model, that is governed by θk.
Hence, it is possible to apply the continuous-valued version of the Wonham filter [18] in the form

αk|k =
H ·αk|k−1

Tr [H]
, (9)

H = diag














fw
(

xk − Axk−1 − Buk|k

)

fw
(

xk − Axk−1 − Buk|k−1

)

...

fw
(

xk − Axk−1 − Buk|k−N

)

fw
(

xk − Axk−1 − Bud
)














. (10)

The prediction αk|k−1 can be calculated using Eq. (8). It can be seen that αk|k (and therefore
αk+m|k) is time-varying. To reduce the complexity in the calculation, the weighting factors αk|k

can be approximated by its stationary probability solution limk→∞αk|0 = α∞. The stationary
solution α∞ can be computed by the equilibrium equation

α∞ = PTα∞ (11)

that always has a unique solution according to Markov chain theory. Using α∞ instead of αk|k

has the advantage that all weighting factors become time-invariant and the controller is easier to
calculate. Furthermore, the stability of the closed-loop system can be analyzed more easily (see
Sec. 5). We, therefore, derive the controller for both cases, but concentrate in the stability analysis
on the time-invariant approximation.

In section 4.2, we will need the expected value of the virtual control inputs. These can be
calculated by

E
{

uv
k+m|k

}

=

∫ ∞

−∞
uv

k+m|k f(uv
k+m|k) duv

k+m|k

=

∫ ∞

−∞
uv

k+m|k

(

α
(N−m+1)
k+m|k δ(uv

k+m|k − ud) +
N−m∑

i=0

α
(i)
k+m|k δ(uv

k+m|k − uk+m|k−i)

)

duv
k+m|k

= α
(N−m+1)
k+m|k ud +

N−m∑

i=0

α
(i)
k+m|k uk+m|k−i . (12)

With the steady state approximation this becomes

E
{

uv
k+m|k

}

≈ α(N−m+1)
∞ ud +

N−m∑

i=0

α(i)
∞ uk+m|k−i . (13)

4.2. Controller Design

This subsection describes, how to design the sequence-based controller based on the linear
feedback controller

ûk = L · xk , (14)

where the feedback matrix L was designed for the plant (1) without consideration of network
effects by, e.g., pole placement or another modern control method, such as LQR, H2, or H∞. In the
following, we use the feedback matrix L to generate control input sequences based on the predicted
future states of the plant.
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Based on the measured state xk at time step k, the entries of the control input sequence Uk are
calculated by

uk|k = L · xk , (15)

uk+1|k = L · E{xk+1|k} , (16)

...

uk+N |k = L · E{xk+N |k} , (17)

where xk+m|k ∼ f(xk+m|Ik
) describes the state predictions conditioned on the information Ik. The

state predictions are random with respect to the process noise and the virtual control inputs. The
expected value of the predicted state predictions E{xk+m|k} can be calculated by

E{xk+1|k} = E{Axk + Buk +wk |Ik}

= Axk + B · E{uk |Ik} + E{wk |Ik}

= Axk + B · E{uv
k|k}

= Axk + B ·

(

α
(N+1)
k|k ud +

N∑

i=0

α
(i)
k|k uk|k−i

)

≈ Axk + B ·

(

α(N+1)
∞ ud +

N∑

i=0

α(i)
∞ uk|k−i

)

,

E{xk+2|k} = E{Axk+1 + Buk+1 +wk+1 |Ik}

= A · E{xk+1 |Ik} + B · E{uk+1 |Ik} + E{wk+1 |Ik}

= A · E{xk+1|k} + B · E{uv
k+1|k}

= A · E{xk+1|k} + B ·

(

α
(N)
k+1|k ud +

N−1∑

i=0

α
(i)
k+1|k uk+1|k−i

)

≈ A · E{xk+1|k} + B ·

(

α(N)
∞ ud +

N−1∑

i=0

α(i)
∞ uk+1|k−i

)

,

E{xk+m|k} = E{Axk+m−1 + Buk+m−1 +wk+m−1 |Ik}

= A · E{xk+m−1|k} + B · E{uv
k+m−1|k}

= A · E{xk+m−1|k} + B ·

(

α
(N−m+1)
k+m|k ud +

N−m∑

i=0

α
(i)
k+m|k uk+m|k−i

)

≈ A · E{xk+m−1|k} + B ·

(

α(N−m+1)
∞ ud +

N−m∑

i=0

α(i)
∞ uk+m|k−i

)

. (18)

Remark 4.4 If the size of the packets is equal to 1, i.e., N = 1, then the proposed controller
coincides with the given linear state feedback controller.

For taking the expected value, we use (12) and the assumption that wk is zero-mean and indepen-
dent of xk and uv

k+m|k.

From (15) - (17) and (18) it follows that the extended controller using the time-invariant ap-
proximation of the weighting factors is linear not only in the measured state xk but also in the
control inputs of the sequences Uk, . . . , Uk−N−1. Therefore, the controller can be formulated as
linear feedback controller working on the augmented state

Uk = L̃ ·ψ
k

, (19)
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where the augmented state is defined by

ψ
k

=
[

xT
k ηT

k

]T
, (20)

with

η
k

=












[uT
k|k−1 uT

k+1|k−1 · · · uT
k+N−1|k−1]T

[uT
k|k−2 uT

k+1|k−2 · · · uT
k+N−2|k−2]T

...
[uT

k|k−N+1 uT
k+1|k−N+1]T

uT
k|k−N












∈ R
d , d = n

N(N + 1)

2
. (21)

The vector η
k

contains all control inputs of the already sent control input sequences Uk−1, Uk−2,
. . ., Uk−N that still could be applied in time step k or later. The result (19) will be very useful in
the next section, where a criterion for closed-loop stability for the extended controller is derived.

5. Stability Issues

In this section we will derive a criterion for closed-loop stability of the proposed controller. We
concentrate on the case where the weighting factors of the virtual control inputs are approximated
by its steady state distribution described by Eq. (11).

Remark 5.1 It should be noted, that, although an approximation is used in the controller design,
the derived stability results for this controller are exact and not approximated.

To derive the stability criterion, first, a model of network and actuator is derived, that, in a second
step, will be combined with the model of the plant (1) and the controller (19).

5.1. Combined Model of Network and Actuator

Based on η
k

and θk as defined in section 4.1, the combined state space model of network and
actuator can be formulated as

η
k+1

= Fη
k

+ GUk , (22)

ûk = Hθk
η

k
+ Jθk

Uk , (23)

with

F =











0nN×n 0nN×n(N−1) 0nN×n 0nN×n(N−2) · · · 0nN×n 0nN×n

0n(N−1)×n In(N−1) 0n(N−1)×n 0n(N−1)×n(N−2) · · · 0n(N−1)×n 0n(N−1)×n

0n(N−2)×n 0n(N−2)×n(N−1) 0n(N−2)×n In(N−2) · · · 0n(N−2)×n 0n(N−2)×n

...
...

...
...

. . .
...

...
0n 0n×n(N−1) 0n 0n×n(N−2) · · · In 0n











,

G =









0nN×n InN

0n(N−1)×n 0n(N−1)×nN

...
...

0n 0n×nN









, Jθk
=
[

δ(θk,0)In 0n×nN

]

, Hθk
=













δ(θk ,1)In

0n×n(N−1)

δ(θk ,2)In

0n×n(N−2)
...

δ(θk ,N)In













T

,

where δ(θk,i) is the Kronecker delta function defined as

δ(θk ,i) =

{

1 if θk = i
0 if θk 6= i

.
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5.2. Model of the Closed-Loop System

By using the augmented state ψ
k

form (20) and combining (1), (22), and (23), it holds

ψ
k+1

=

[

A B · Hθk

0d×s F

]

ψ
k

+

[

B · Jθk

G

]

Uk +

[

wk

0d

]

.

Using (19) results in

ψ
k+1

=

[[

A B · Hθk

0d×s F

]

−

[

B · Jθk
· L̃

G · L̃

]]

︸ ︷︷ ︸

Ãθk

ψ
k

+

[

wk

0d

]

︸ ︷︷ ︸

w̃
k

(24)

= Ãθk
ψ

k
+ w̃k . (25)

The closed-loop system described by (25) can be interpreted as an inhomogeneous Markovian jump
linear system (MJLS). For this kind of system, several results on mean square stability are available
in the literature, e.g., [19] and [20]. In the following, we adopt the concept of mean square stability
and proof from [19].

Definition 5.1 The system (25) with Markovian jump parameter θk is mean square stable (MSS),
if for any initial condition θ0 ∈ {0, 1, · · · , N} and ψ

0
∈ R

d+s there exist a bounded µ ∈ R
d+s and

a symmetric positive-semidefinite matrix M (independent of ψ
0

and θ0) such that

lim
k→∞

E
{

ψ
k

}

= µ , (26)

lim
k→∞

E
{

ψ
k
ψT

k

}

= M . (27)

Theorem 5.1 The system (25) with Markovian jump parameter θk and transition matrix P is
stable in the mean square sense, if and only if

rσ((PT ⊗ In2) · diag[Ãi ⊗ Ãi]) < 1 , (28)

where rσ (M) is the spectral radius of M and diag [Si] is the block diagonal matrix built by Si in
the diagonal with i = {0, 1, ..., N} and zero everywhere else, i.e.,

diag [Si] =









S0 0 · · · 0

0 S1 · · · 0
...

...
...

...
0 0 · · · SN









. (29)

Proof. The result follows from theorem 3.9 and 3.33 in [19]. �

6. Simulation Results

In this section, we evaluate the presented method by means of simulations with an inverted pendu-
lum on a cart, which is a classical benchmark for illustrating various control techniques. A basic
description of this experimental setup can be found, e.g., in [21].
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Mass of the cart 0.5 kg
Mass of the pendulum 0.5 kg
Friction of the cart 0.1 N/m/s
Length to pendulum center of mass 0.3 m
Inertia of the pendulum 0.006 kg · m2

Table 1: Parameters of the inverted pendulum used in the simulations.
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Figure 3: Probability density functions over the time delays of the two networks considered in the evaluation.

6.1. Simulation Setup

For realization of (2), we use a classical LQR controller [22]. In Table 1, the simulation param-
eters of the inverted pendulum are shown. The weighting matrices are chosen with

Q =








5000 0 0 0
0 0 0 0
0 0 100 0
0 0 0 0








,

R = 100 ,

and the continuous differential equation was sampled with a sampling time of 0.01 s. With this
setting, the resulting state feedback matrix is

L = [−6.54, −5.50, 28.72, 5.50] .

At every time step k, we add a process noise wk to the position xk of the cart and to the angle
φk of the pendulum, which is characterized by a zero-mean Gaussian noise with varying standard
deviation σw for different simulation runs.

For all simulation runs, the initial state vector x0 is

x0 =
[

x0, ẋ0, φ, φ̇
]T

= [0, 0.2, 0.2, 0]T .

In order to simulate the transmission characteristics of the network, two probabilistic models
for the occurring time delays were employed, whose probability density functions can be seen in
Fig. 3. The time delays are bounded in both networks, because this allows a comparison to other
sequence-based control methods, which need this assumption.

Overall, we conducted 100 Monte Carlo simulation runs for each combination of selected stan-
dard deviation of the process noise and selected probabilistic network model, where each run consists
of 150 time steps.

We compare the presented technique for NCS with virtual control inputs (VCI-NCS) to three
other NCS control approaches. For better analyzing the quality of the compensation technique

11
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Figure 4: Example state trajectory for a single simulation run with network A and a standard deviation σw = 0.006
of the process noise. The identifier x denotes the position of the cart and φ the angle of the pendulum. The result
of the controller without a network (CS) is depicted with a solid black line ( ), the proposed approach VCI-NCS
with a dotted blue ( ), OL-NCS with a dashed red ( ), and PC-NCS with a dashed dotted green line ( ).

for time delays, we consider a classical LQR (abbreviated by CS) with a transparent connection
between controller and actuator. In this case, all calculated control inputs

uk|k = L · xk|k

are received by the actuator without any time delay. The control quality of CS can be seen as a
ground truth for the NCS control methods.

Furthermore, we compare VCI-NCS to a widely used NCS controller that sends at every time
step a sequence of control inputs resulting from an open-loop control problem (OL-NCS) [12, 13].
In more detail, the packet Uk sent in time step k contains the entries

uk|k = L · xk|k ,

uk+1|k = L · xk+1|k ,

...

uk+N−1|k = L · xk+N−x|k ,

where xk+i|k is determined for 1 ≤ i < N according to

xk+i|k = Axk+i−1|k + Buk+i−1|k .

Finally, we implemented an instance of a class of NCS approaches that ensures the so-called
prediction consistency by means of a deterministic protocol between actuator and controller. Since
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CS VCI-NCS OL-NCS PC-NCS

σw = 0.001 / network A 3.20 3.90 3.78 5.18
σw = 0.003 / network A 12.78 17.15 18.51 36.44
σw = 0.006 / network A 45.93 62.74 67.24 144.15
σw = 0.009 / network A 98.57 137.38 140.02 262.28
σw = 0.012 / network A 186.60 275.22 290.18 619.88
σw = 0.001 / network B 3.03 3.42 3.34 5.37
σw = 0.003 / network B 88.85 129.68 141.26 317.16
σw = 0.006 / network B 110.37 164.32 166.49 359.85
σw = 0.009 / network B 122.50 158.54 175.45 386.63
σw = 0.012 / network B 197.94 275.24 310.50 588.27

Table 2: Cumulated costs of the simulated state trajectories averaged over the 100 Monte Carlo runs for non-networked
controller (CS), the proposed method considering virtual control inputs (VCI-NCS), the NCS method sending open
loop control inputs (OL-NCS), and the approach based on prediction consistency (PC-NCS).

we assume that successfully transmitted packets are not acknowledged by the network protocol,
the parameter τmax of the PC-NCS approach described in [9] was set to the true maximal delay.

6.2. Results

In Fig. 4, an example state trajectory of a simulation run with network A and a standard
deviation σw = 0.006 is depicted. The state trajectory of VCI-NCS is very similar to the one
generated by the non-networked controller. Thus, the proposed method is an adequate technique for
compensating time delays. In contrast, the trajectories of OL-NCS and PC-NCS are outperformed
by VCI-NCS.

In order to make quantitative statements, we conducted 100 Monte Carlo simulation runs with
different parameter settings. The averaged costs over all runs are shown in Table 2. For small
system noise, the cumulated averaged costs of the proposed approach using virtual inputs and the
NCS method sending open loop sequences are very similar. This is based on the fact that in this
case, the components of the Dirac Mixture densities characterizing the virtual control inputs do
not differ strongly, or more precisely, the variances of these densities are very small. Thus, both
methods use control inputs for generating the input sequences, which are very similar to the actually
applied input. In contrast, if the system noise increases, the variance of the Dirac Mixture densities
also increases. Considering the NCS approach sending open loop sequences, inputs used for the
prediction of the system evolution do not coincide in general with the actually applied inputs. As
a result, the quality of control decreases. By incorporating the potentially applied inputs in a
stochastic way, the network-induced disturbances can be compensated better, even if the system
noise is large.

7. Conclusions

We presented a novel sequence-based predictive control scheme for NCS that extends a given
feedback controller to explicitly incorporate communication aspects as transmission delays and
packet losses. The key idea of our approach is that the controller subsumes its knowledge about
the control inputs potentially applied by the actuator in form of a discrete probability density
function, the so-called virtual control inputs. Based on this probabilistic description, the controller
determines sequences of future control inputs which are sent to the actuator.

To the best of our knowledge, the concept of virtual control inputs is innovative and promising,
especially since simulation results with an inverted pendulum show an excellent performance of the
proposed approach in comparison to standard NCS methods.

Future work will be concerned with incorporation of further information into the control decision.
For example, promising aspects might be the investigation of
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1. allowing for time-varying transmission characteristics of the network resulting in more ade-
quate models of the real system,

2. acknowledgements of successfully transmitted packets which allow to reduce the components
of the virtual control inputs,

3. closed-loop stability if the weighting factors of the virtual control inputs are estimated by the
Wonham filter.

Appendix: Derivation of the Transition Matrix

The entries p(i, j) (with i, j ∈ {0, 1, · · · , N + 1) of the transition matrix can be categorized into
three groups. The first group consists of the entries with j ≥ i + 2, i. e., entries that are in the
upper right triangle of P, which describe transitions from θk = i to θk+1 = j. These entries have
to be zero as θk, i.e. the age of the buffered control sequence, can only increase by one per time
step due to the buffering scheme.

The second group consists of the entries in the upper diagonal, i.e., the entries p(i, i+1), that
describe the probability that the age of the buffered control sequence will increase by one. This
corresponds to the case that the buffered sequence at time step k is not replaced and stays in the
buffer. This will only occur if the actuator does not receive a packet that was generated after the
actually buffered sequence. It therefore holds that

p(i, i+1) =
i∏

j=0

(1 − q̌j) ,

where q̌j denotes the probability that a packet that was generated j time steps ago and that has
not been received yet, will be received during the next time step. It holds that

q̌j = qj





N+1∑

r=j

qr





−1

(30)

where qi describes the probability of the event that a packet is delayed by i time steps, which can
easily be calculated with the probability density function of the time delays given. Therefore, the
first term in Eq.(30) describes the probability that the sequence generated i time steps ago will
arrive during the next time step ignoring that we know that the sequence has not been received
yet. The second term normalizes this probability by the probability that this sequence will arrive
at all. Combining Eq.(30) and Eq.(30) it holds

p(i, i+1) =
i∏

j=0

(1 − q̌j) =
i∏

j=0




1 − qj





N+1∑

r=j

qr





−1



 =

i∏

j=0










N+1∑

r=j+1

qr

N+1∑

r=j

qr










=

N+1∑

r=i+1

qr

N+1∑

r=0

qr

=
N+1∑

r=i+1

qr = 1 −
i∑

r=0

qr . (31)

The remaining entries p(i, j) with j ≤ i build the lower triangle of P and describe transitions
where θk does not increase. This corresponds to the case when the buffered sequence is replaced
by a newer one. The probability that this happens is given by the probability that a new packet is
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received (that was generated after the buffered sequence) and all packets generated after this new
packet are not received. This means

p(i, j) = q̌j

j−1
∏

r=0

(1 − q̌r) (32)

Note that in the above equation the probabilities whether a packet is received in the next time step
is conditioned on the information that the corresponding packet has not been received yet. This
condition is necessary since, if neglected, the transition could not start in state θk = i. Using Eq.
(30) and Eq. (31) it holds that

p(i, j) = q̌j

j−1
∏

r=0

(1 − q̌r) = qj





N+1∑

r=j

qr





−1
N+1∑

r=j

qr = qj . (33)
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