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Abstract

This paper is concerned with the optimal approximation of a given multivariate Dirac mixture, i.e.,
a density comprising weighted Dirac distributions on a continuous domain, by an equally weighted
Dirac mixture with a reduced number of components. The parameters of the approximating density
are calculated by minimizing a smooth global distance measure, a generalization of the well-known
Cramér-von Mises Distance to the multivariate case. This generalization is achieved by defining an
alternative to the classical cumulative distribution, the Localized Cumulative Distribution (LCD),
as a characterization of discrete random quantities (on continuous domains), which is unique and
symmetric also in the multivariate case. The resulting approximation method provides the basis for
various efficient nonlinear state and parameter estimation methods.

1. Introduction

1.1. Motivation
We consider point sets Px = {x1, x2, . . . , xL} where the points xi, i = 1, . . . , L are arbitrarily

placed in RN , i.e., xi ∈ RN , i = 1, . . . , L. The points can be of arbitrary origin, e.g., be samples from
a probability density function, and can be interpreted as being equally weighted or be equipped with
weights. When they are weighted, we assume the weights wi associated with point xi for i = 1, . . . , L
to be positive and sum up to one.

The point sets are interpreted as discrete probability density functions over a continuous domain,
where the individual points correspond to locations of Dirac distributions with associated weights. The
point set will be called a Dirac mixture density. Dirac mixture densities are a popular representation
of densities in stochastic nonlinear filters such as particle filters. They characterize random vectors in
a similar way as sets of sample points by having a large number of components with large weights in
regions of high density and a small number of components with small weights in regions of low density.
Hence, approximating one Dirac mixture density by another one while maintaining the information
content is equivalent to maintaining its probability mass distribution.

Reducing the size of a point set while maintaining its information content as much as possible is a
fundamental problem occurring in many flavors in different contexts. One example is a large number
of noisy samples from an underlying unknown probability density function. The goal is to represent
the underlying density by a reduced set of well-placed Dirac components while removing the noise.
The need for reduction also occurs, when the given point set is too complex for further processing.
During the recursive processing of Dirac mixtures, for example in a nonlinear filter, the number of
components often explodes. A typical example is the propagation of Dirac mixture densities through a
discrete-time dynamic system, which requires a kind of generalized convolution with the noise density.
After one processing step, the number of components is given by the product of the given number of
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components times the number of components used for representing the noise density, which results in
an exponential increase with the number of processing steps. Hence, the goal is to keep the number of
components at a manageable level by performing regular reductions.

1.2. Related Work
We will now take a look at different methods that have been devised in the general context of

reduction of point sets or densities.

Random Selection. The most common technique for reducing the number of components of a given
Dirac mixture density is the random selection of certain components. It is commonly used in the
prediction step of Particle Filters, where each prior sample is perturbed with a single sample from the
noise distribution before propagation thorough the system model. The perturbation can be viewed as
generating the noise samples at once with a subsequent random selection from the Cartesian product
of prior samples and noise samples.

Intermediate Continuous Densities. Another common technique is to replace the given Dirac mixture
by a suitable continuous density in a first step. In a second step, the desired number of samples is
drawn from the continuous density. With this technique, it is also possible to increase the number of
components as required. However, the first step is equivalent to density estimation from samples, which
is by itself a complicated task and an active research topic. Furthermore, this reduction technique
introduces undesired side information via the choice of the continuous smoothing density.

Clustering or Vector Quantization Methods. Clustering or vector quantization methods also aim at
representing a point set by a smaller set of representatives. For optimization purposes, a distortion
measure is typically used, which sums up the (generalized) distances between the points and their
representatives. Minimizing the distortion measure results in two conditions: 1. Points are associated
to their closest representative. 2. The representative is calculated as the average of all its associated
points. As no closed-form solution for performing the minimization of the distortion measure exist,
robust iterative procedures have been devised starting with Lloyd’s algorithm proposed in 1957 and
published later in [1], first called k-means algorithm in [2], and its extension in the form of the
Linde-Buzo-Gray-algorithm [3]. Obviously, the representatives fulfilling the above two conditions do
not necessarily maintain the form of the density, which will also be shown by some examples in Sec. 7
of this paper. An additional problem of clustering or vector quantization methods is that the iterative
minimization procedures typically get stuck in local minima. Intuitively, the resulting samples are
only influenced by samples in the corresponding part of the Voronoi diagram, while the proposed
method is based upon a global distance measure.

Reapproximating Continuous Mixtures with Continuous Mixtures. As Dirac mixture reduction is a
special case of general mixture reduction techniques. As these techniques are usually focused on
continuous densities such as Gaussian mixtures, e.g., see [4], it is worthwhile to discuss the differences.
First, when continuous mixtures are re-approximated with continuous mixtures, the densities or
parts of the densities can be directly compared in terms of the integral squared difference [5] or the
Kullback-Leibler divergence [6]. Directly comparing densities with an integral measure is not possible
when at least one of the densities is a Dirac mixture density [7]. Instead, cumulative distributions
can be used in the scalar case or appropriate generalizations for the multivariate case [7]. Second, for
continuous mixtures two or more critical components can be merged in order to locally reduce the
number of components [8], where different criteria for identifying components are possible such as
small weights. These components are then replaced by a new component with appropriate parameters,
e.g., maintaining mean and covariance. Locally replacing components is not straightforward for Dirac
mixture densitys as it is i) difficult to identify potential merging candidates and ii) a single replacement
component does not capture the extent covered by the original components. Hence, a replacement of
several Dirac components by a smaller set of Dirac components with a cardinality larger than one
would be in order.
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Reapproximating Continuous Mixtures with Discrete Mixtures. The reduction problem can be viewed
as approximating a given (potentially continuous) density with a Dirac mixture density. Several
options are available for performing this approximation. Moment-based approximations have been
proposed in the context of Gaussian densities and Linear Regression Kalman Filters (LRKFs), see [9].
Examples are the Unscented Kalman Filter (UKF) in [10] and its scaled version in [11], its higher-order
generalization in [12], and a generalization to an arbitrary number of deterministic samples placed
along the coordinate axes introduced in [13]. For circular probability density functions, a first approach
to Dirac mixture approximation in the vein of the UKF is introduced in [14] for the von Mises
distribution and the wrapped Normal distribution. Three components are systematically placed based
on matching the first circular moment. This Dirac mixture approximation of continuous circular
probability density functions has already been applied to sensor scheduling based on bearings-only
measurements [15]. In [16], the results are used to perform recursive circular filtering for tracking an
object constrained to an arbitrary one-dimensional manifold. For the case that only a finite set of
moments of a random vector is given and the underlying density is unknown, an algorithm is proposed
in [17] for calculating multivariate Dirac mixture densities with an arbitrary number of arbitrarily
placed components maintaining these moments while providing a homogeneous coverage of the state
space. This method could also be used for the reduction problem by calculating the moments of the
given point set. Methods that are based on distance measures between the given density and its Dirac
mixture approximation have been proposed for the case of scalar continuous densities in [18, 19].
They are based on distance measures between cumulative distribution functions. These distance-based
approximation methods are generalized to the multi-dimensional case by defining an alternative to the
classical cumulative distribution, the Localized Cumulative Distribution (LCD) [7], which is unique
and symmetric. Based on the LCD, multi-dimensional Gaussian densities are approximated by Dirac
mixture densities in [20]. A more efficient method for the case of standard Normal distributions with
a subsequent transformation is given in [21].

The LCD-based methods will be extended to the reduction of Dirac mixture densities in this
paper. A variant of the reduction problem, the optimal approximation of the Cartesian product of
marginal Dirac mixture densities is considered in [22] and a solution is proposed that does not require
the explicit calculation of all combinations of marginal components.

1.3. Key Ideas and Results of the Paper
The key idea of this paper is the systematic reapproximation of Dirac mixture densities by

minimization of a novel distance measure. The distance measure compares the probability masses
of both densities under certain kernels for all possible kernel locations and widths, which allows
the use of integral measures for the mass functions. This approximation method is similar to the
approximation of multivariate Gaussian densities by Dirac mixtures in [20]. However, calculating
the distance measure between multivariate Gaussians and Dirac mixture densities in [20] requires a
one-dimensional numerical approximation, while the distance measure for comparing Dirac mixture
densities with Dirac mixture densities proposed in this paper is given in closed from.

The resulting distance measure is smooth and does not suffer from local minima, so that standard
optimization methods can be used for calculating the desired Dirac mixture approximation. As no
randomness is involved, the optimization results are completely deterministic and reproducible, which
is in contrast to random selection procedures and most clustering methods.

The results for approximating 2000 samples from a standard Normal distribution by a Dirac
mixture approximation with L = 10, L = 20, and L = 30 components are shown in Fig. 1.

1.4. Organization of the Paper
In the next section, a rigorous formulation of the considered approximation problem is given. For

comparing Dirac mixture densities, an alternative to the classical cumulative distribution, the so called
Localized Cumulative Distribution (LCD) is introduced in Sec. 3. Based on this LCD, a generalization
of the Cramér-von Mises Distance, which is the squared integral difference between the LCD of the
given density and the LCD of the approximate density is given in Sec. 4. This new distance measure
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Figure 1: Dirac mixture approximation of 2000 samples from a standard Normal distribution with L = 10, L = 20, and
L = 30. Blue: Random samples representing the standard Normal distribution. Red: Reduced point set.

is used for analysis purposes, i.e., for comparing the approximate Dirac mixture to the given one. The
synthesis problem, i.e., determining the parameters of the approximate Dirac mixture in such a way
that it is as close as possible to the given Dirac mixture according to the new distance measure is
the topic of Sec. 5. Minimization is performed with a quasi-Newton method. The required gradient is
derived in Appendix A, which also gives necessary conditions for a minimum distance in the form of a
set of nonlinear equations. The complexity of both calculating the distance measure and its gradient
in practical situations is derived in Sec. 6. Examples of using the new reduction method on specific
point sets are given in Sec. 7. The new approach is discussed in Sec. 8 and an outlook to future work
is given.

2. Problem Formulation

We consider an N–dimensional Dirac mixture density with M components given by

f̃(x) =
M∑
i=1

wyi δ(x− yi) ,

with positive weights wyi > 0, i.e., wyi > 0, for i = 1, . . . ,M , that sum up to one and M locations
y
i

=
[
y

(1)
i , y

(2)
i , . . . , y

(N)
i

]T
for i = 1, . . . ,M . This density is approximated by another N–dimensional

Dirac mixture density with L components given by

f(x) =
L∑
i=1

wxi δ(x− xi) , (1)

with positive weights wxi , i.e., wxi > 0, for i = 1, . . . , L, that sum up to one and L locations
xi =

[
x

(1)
i , x

(2)
i , . . . , x

(N)
i

]T
for i = 1, . . . , L, where we typically assume L ≤M .

The goal is to select the location parameters xi, i = 1, . . . , L of the approximating density f(x) in
such a way that a distance measure D between the true density f̃(x) and its approximation f(x) is
systematically minimized. The weights wxi , i = 1, . . . , L are assumed to be given and are typically set
to be equal. An extension to given unequal weights or to even optimizing the weights of f(x) is a
simple extension that is not pursued in this paper.

The true Dirac mixture density might already have equally weighted components, so that the
information is solely stored in the component locations. In this case, the goal of the approximation is
a pure reduction of the number of components. On the other hand, the components of the true Dirac
mixture density might have different weights. This could be the result of, e.g., weighting a prior Dirac
mixture density by a likelihood function in a Bayesian filtering setup. In that case, the approximation

4



replaces an arbitrarily weighted Dirac mixture density by an equally weighted one. In the latter case,
an equal number of components, i.e., L = M , can be useful.

3. Localized Cumulative Distribution

For the systematic reduction of the number of components of a given Dirac mixture density, a
distance measure for comparing the original density and its approximation is required. However, Dirac
mixture densities cannot be directly compared as they typically do not even share a common support.
Typically, their corresponding cumulative distributions are used for comparison purposes, as is the
case in certain statistical tests such as the Kolmogov-Smirnov test [23, p. 623]. However, it has been
shown in [7] that although the cumulative distribution is well suited for comparing scalar densities,
it exhibits several problems in higher-dimensional spaces: It is non-unique and non-symmetric. In
addition, integral measures for comparing two cumulative distributions do not converge over infinite
integration domains when the underlying Dirac mixture densities differ.

As an alternative transformation of densities, the Localized Cumulative Distribution (LCD)
introduced in [7] is employed here in a generalized form. An LCD is an integral measure proportional
to the mass concentrated in a region with a size parametrized by a vector b around test points m.
These regions are defined by kernels K(x−m, b) centered around m with size b.

Definition 3.1. Let x be a random vector with x ∈ RN , which is characterized by an N–dimensional
probability density function f : RN→R+. The corresponding Localized Cumulative Distribution (LCD)
is defined as

F (m, b) =
∫
RN

f(x)K(x−m, b) dx

with b ∈ RN+ and F (., .) : Ω→ [0, 1],Ω ⊂ RN × RN+ .

Definition 3.2. As a shorthand notation, we will denote the relation between the density f(x) and
its LCD F (x, b) by

f(x) c sF (m, b) .

In this paper, we focus attention on separable kernels of the type

K(x−m, b) =
N∏
k=1

K(x(k) −m(k), b(k)) .

Furthermore, we consider kernels with equal width in every dimension, i.e., bi = b for i = 1, . . . , N ,
which gives

K(x−m, b) =
N∏
i=k

K(x(k) −m(k), b) .

Rectangular, axis-aligned kernels as used in [7] are the obvious choice as they yield the probability
mass of the considered density in a rectangular region centered around m. Rectangular kernels are a
good choice for analysis purposes and are used, e.g., when assessing the discrepancy of a point set
from a uniform distribution.

However, for synthesizing a suitable approximation for a given (nonuniform) Dirac mixture with
a smaller number of components, smooth kernels lead to simpler optimization problems. Here, we
consider kernels of Gaussian type according to

K(x−m, b) =
N∏
k=1

exp

−1
2

(
x(k) −m(k)

)2

b2

 .

Based on a Gaussian kernel, an N-dimensional Dirac component δ(x− x̂) at location x̂ corresponds to
its LCD ∆(m, b)

δ(x− x̂) c s∆(m, b)
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with

∆(m, b) =
∫
RN

δ(x− x̂)K(x−m, b) dx

=
N∏
k=1

exp

−1
2

(
x̂(k) −m(k)

)2

b2

 .

With this LCD of a single Dirac component, the LCD of the Dirac mixture in (1) is given by

F (m, b) =
L∑
i=1

wxi

N∏
k=1

exp

−1
2

(
x

(k)
i −m(k)

)2

b2

 .

A similar result holds for the original Dirac mixture f̃(x).

4. A Modified Cramér-von Mises Distance

The Localized Cumulative Distribution (LCD) defined previously can now be used to derive a
modified version of the Cramér-von Mises Distance suitable for comparing Dirac Mixtures. This new
distance is defined as the integral of the square of the difference between the LCD of the true density
f̃(x) and the LCD of its approximation f(x).
Definition 4.1 (Modified Cramér-von Mises Distance). The distance D between two densities
f̃(x) : RN → R+ and f(x) : RN → R+ is given in terms of their corresponding LCDs F̃ (x, b) and
F (x, b) as

D =
∫
R+
w(b)

∫
RN

(
F̃ (m, b)− F (m, b)

)2
dmdb ,

where w(b) : R+ → [0, 1] is a suitable weighting function.
A weighting function w(b) has been introduced that controls how kernels of different sizes influence

the resulting distance, which provides some degrees of freedom during the design of an approxima-
tion algorithm. Alternatively, a unit weighting function could be used while modifying the kernels
accordingly.
Theorem 4.1. By inserting the LCDs

F̃ (m, b) =
M∑
i=1

wyi

N∏
k=1

exp
(
−1

2
(y(k)
i −m(k))2

b2

)
and

F (m, b) =
L∑
i=1

wxi

N∏
k=1

exp
(
−1

2
(x(k)
i −m(k))2

b2

)
,

and by using the weighting function

w(b) =
{ 1
bN−1 b ∈ [0, bmax]
0 elsewhere

the following expressions for the distance D

D =
M∑
i=1

M∑
j=1

wyi w
y
j γ

(
N∑
k=1

(
y

(k)
i − y

(k)
j

)2
)

−2
L∑
i=1

M∑
j=1

wxi w
y
j γ

(
N∑
k=1

(
x

(k)
i − y

(k)
j

)2
)

+
L∑
i=1

L∑
j=1

wxi w
x
j γ

(
N∑
k=1

(
x

(k)
i − x

(k)
j

)2
)
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with

γ(z) = π
N
2

8

{
4 b2

max exp
(
−1

2
z

2 b2
max

)
+ z Ei

(
−1

2
z

2 b2
max

)}
,

are obtained, where Ei(z) denotes the exponential integral.
Proof. For the given specific weighting function w(b), the distance measure is given by

D =
∫ bmax

0

1
bN−1

∫
RN

(
F̃ (m, b)− F (m, b)

)2
dmdb . (2)

Inserting the LCDs F̃ (m, b) and F (m, b) leads to

D =
∫ bmax

0

1
bN−1

∫
RN

M∑
i=1

M∑
j=1

wyi w
y
j

N∏
k=1

exp
(
−1

2
(y(k)
i −m(k))2

b2

)
N∏
k=1

exp

−1
2

(y(k)
j −m(k))2

b2


−2

L∑
i=1

M∑
j=1

wxi w
y
j

N∏
k=1

exp
(
−1

2
(x(k)
i −m(k))2

b2

)
N∏
k=1

exp

−1
2

(y(k)
j −m(k))2

b2


+

L∑
i=1

L∑
j=1

wxi w
x
j

N∏
k=1

exp
(
−1

2
(x(k)
i −m(k))2

b2

)
N∏
k=1

exp

−1
2

(x(k)
j −m(k))2

b2

 dmdb .

Exchanging integration and summation gives

D =
M∑
i=1

M∑
j=1

wyi w
y
j

∫ bmax

0

1
bN−1

N∏
k=1

∫
R

exp
(
−1

2
(y(k)
i −m(k))2

b2

)
exp

−1
2

(y(k)
j −m(k))2

b2

 dm(k) db

−2
L∑
i=1

M∑
j=1

wxi w
y
j

∫ bmax

0

1
bN−1

N∏
k=1

∫
R

exp
(
−1

2
(x(k)
i −m(k))2

b2

)
exp

−1
2

(y(k)
j −m(k))2

b2

 dm(k) db

+
L∑
i=1

L∑
j=1

wxi w
x
j

∫ bmax

0

1
bN−1

N∏
k=1

∫
R

exp
(
−1

2
(x(k)
i −m(k))2

b2

)
exp

−1
2

(x(k)
j −m(k))2

b2

 dm(k) db

For further simplification, the following closed-form expression for the occurring integrals∫
R

exp
(
−1

2
(zi −m)2

b2

)
exp

(
−1

2
(zj −m)2

b2

)
dm =

√
π b exp

(
−1

2
(zi − zj)2

2 b2

)
, (3)

is used. This gives

D =
M∑
i=1

M∑
j=1

wyi w
y
j

∫ bmax

0
b π

N
2

N∏
k=1

exp

−1
2

(
y

(k)
i − y

(k)
j

)2

2 b2

 db

−2
L∑
i=1

M∑
j=1

wxi w
y
j

∫ bmax

0
b π

N
2

N∏
k=1

exp

−1
2

(
x

(k)
i − y

(k)
j

)2

2 b2

 db

+
L∑
i=1

L∑
j=1

wxi w
x
j

∫ bmax

0
b π

N
2

N∏
k=1

exp

−1
2

(
x

(k)
i − x

(k)
j

)2

2 b2

 db .
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or

D =
M∑
i=1

M∑
j=1

wyi w
y
j

∫ bmax

0
b π

N
2 exp

−
1
2

N∑
k=1

(
y

(k)
i − y

(k)
j

)2

2 b2

 db

−2
L∑
i=1

M∑
j=1

wxi w
y
j

∫ bmax

0
b π

N
2 exp

−
1
2

N∑
k=1

(
x

(k)
i − y

(k)
j

)2

2 b2

 db

+
L∑
i=1

L∑
j=1

wxi w
x
j

∫ bmax

0
b π

N
2 exp

−
1
2

N∑
k=1

(
x

(k)
i − x

(k)
j

)2

2 b2

 db .

With ∫ bmax

0
b exp

(
−1

2
z

2 b2

)
db = 1

8

{
4 b2

max exp
(
−1

2
z

2 b2
max

)
+ z Ei

(
−1

2
z

2 b2
max

})
for z > 0, the final result is obtained.

Remark 4.1. The exponential integral Ei(z) is defined as

Ei(z) =
∫ z

−∞

et

t
dt .

For z > 0, Ei(z) is related to the incomplete gamma function Γ(0, z) according to

Ei(−z) = −Γ(0, z) .

Theorem 4.2. For large bmax, the distance D is described by

D = π
N
2

8
(
Dy − 2Dxy +Dx

)
+ π

N
2

4 CbDE , (4)

with the constant Cb = log(4 b2
max)− Γ. Here only the last term depends upon bmax and

Dy =
M∑
i=1

M∑
j=1

wyi w
y
j xlog

(
N∑
k=1

(
y

(k)
i − y

(k)
j

)2
)

,

Dxy =
L∑
i=1

M∑
j=1

wxi w
y
j xlog

(
N∑
k=1

(
x

(k)
i − y

(k)
j

)2
)

,

Dx =
L∑
i=1

L∑
j=1

wxi w
x
j xlog

(
N∑
k=1

(
x

(k)
i − x

(k)
j

)2
)

,

with xlog(z) = z · log(z) and

DE =
N∑
k=1

(
L∑
i=1

wxi x
(k)
i −

M∑
i=1

wyi y
(k)
i

)2

.
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Proof. For small z > 0, the exponential integral can be approximated by

Ei(−z) ≈ Γ + log(z)− z , (5)

where Γ ≈ 0.5772 is the Euler gamma constant. As a result, the function γ(z) can be approximated
according to

γ(z) ≈ π
N
2

8

{
4 b2

max exp
(
−1

2
z2

2 b2
max

)

+z
(

Γ + log
(1

2
z

2 b2
max

)
− 1

2
z

2 b2
max

)}

≈ π
N
2

8
{

4 b2
max + z

(
Γ− log(4 b2

max) + log(z)
)}

= π
N
2

8
{

4 b2
max − Cb z + xlog(z)

}
.

Inserting the first term into the distance measure D in Theorem 4.1 cancels due to the fact that

π
N
2

2 b2
max


M∑
i=1

M∑
j=1

wyi w
y
j − 2

L∑
i=1

M∑
j=1

wxi w
y
j +

L∑
i=1

L∑
j=1

wxi w
x
j


= π

N
2

2 b2
max

{
M∑
i=1

wyi −
L∑
i=1

wxi

}2

= 0 .

Inserting the second term according to

−π
N
2

8 Cb

N∑
k=1

{
M∑
i=1

M∑
j=1

wyi w
y
j

(
y

(k)
i − y

(k)
j

)2

−2
L∑
i=1

M∑
j=1

wxi w
y
j

(
x

(k)
i − y

(k)
j

)2

+
L∑
i=1

L∑
j=1

wxi w
x
j

(
x

(k)
i − x

(k)
j

)2
}
,

can be written as

−π
N
2

8 Cb

N∑
k=1

{
M∑
i=1

wyi

(
y

(k)
i

)2
− 2

M∑
i=1

M∑
j=1

wyi w
y
j y

(k)
i y

(k)
j +

M∑
i=1

wyi

(
y

(k)
i

)2

−2
[

L∑
i=1

wxi

(
x

(k)
i

)2
− 2

L∑
i=1

M∑
j=1

wxi w
y
jx

(k)
i y

(k)
j +

M∑
i=1

wyi

(
y

(k)
i

)2
]

+
L∑
i=1

wxi

(
x

(k)
i

)2
− 2

L∑
i=1

L∑
j=1

wxi w
x
j x

(k)
i x

(k)
j +

L∑
i=1

wxi

(
x

(k)
i

)2
}
.

Canceling corresponding terms finally gives

π
N
2

4 Cb

N∑
k=1

(
M∑
i=1

wyi y
(k)
i −

L∑
i=1

wxi x
(k)
i

)2

.

Inserting the third term gives the remaining expressions.

Remark 4.2. For equal expected values of the densities f̃(x) and f(x), the distance measure in Theorem
4.2 does not depend upon bmax anymore.
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5. Reduction

The goal is to find the optimal L locations xi, i = 1, . . . , L of the approximating Dirac mixture
density such that the distance measure D in (4) in Theorem 4.2 is minimized. For optimization, we
use a quasi-Newton method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The required
gradient G is given in closed form in Appendix A.

The final expressions for the distance measure G in (4) in Theorem 4.2 and its gradient G in (A.2)
in Theorem A.2 do not depend on the maximum kernel width bmax, when the means of the original
Dirac mixture and its reduction are equal. To enforce equal means during the optimization with an
unconstrained optimization method, bmax is set to a large value in these expressions. Alternatively,
bmax could be set to zero in the expressions (4) and (A.2) so that they are independent of bmax, while
the constraint of equal means is handled by a constrained optimization method.

Unless prior knowledge about the locations xi, i = 1, . . . , L of the approximating Dirac mixture
density is available, the locations are initialized with random samples before starting the optimization.

6. Complexity

Finding the the minimum of the distance D in (4) either with or without employing the gradient
G or the direct solution of the system of nonlinear equations in (A.3) requires numerical optimization
routines with the time complexity depending on the specific routine employed for that purpose. For
that reason, the focus will be on analyzing the complexity of performing one evaluation of the distance
D in (4) and the corresponding gradient G in (A.2) or the equations in (A.3).

The evaluation of the distance D in (4) requires O
(
(M2 +M · L+ L2) ·N

)
operations, with M

the number of Dirac components in the original Dirac mixture, L the number of Dirac components
used for the approximation. N is the number of dimensions. As the first term does not depend upon
the desired component locations, it can often be neglected, for example during optimization where
only changes of the distance are needed. It is only required when the absolute value of the distance
is of interest, e.g., when comparing different approximations. As a result, calculating changes of the
distance with respect to changes in locations costs O

(
(M · L+ L2) ·N

)
operations. When the number

of components L of the approximation is much smaller than the number of Dirac mixture components
M of the given original density, i.e., we have L�M , the complexity of calculating the third term in
(4) can be neglected. In that case, we obtain a complexity of O (M · L ·N) operations, which is linear
in M , L, and N .

Evaluating the necessary conditions for the desired minimum in (A.3) requires O
(
(M · L+ L2) ·N

)
operations. Again assuming L�M , this results in a complexity of O (M · L ·N) operations as for
the distance.

7. Numerical Evaluation

The proposed method for the optimal reduction of Dirac mixture densities will now be evaluated
and compared to a standard clustering technique, the k-means algorithm [2].

The results of approximating random samples from a standard Normal distribution have already
been shown in Fig. 1 in the introduction. We now consider the reduction of deterministic samples
from a standard Normal distribution corrupted by a single outlier.

In the next step, we approximate samples from a Gaussian mixture density. For that purpose, we
generated samples from a Gaussian mixture density with four components, see Fig. 2. It is important to
note that we have a total of M = 4000 samples, but the number of samples differs for each component:
We have 500 samples for components (1, 1) and (2, 2) and 1500 samples for components (1, 2) and
(2, 1). After the reduction from M = 4000 samples down to L = 40 samples, we would expect that
the probability masses for each component of the Gaussian mixture density are maintained. This is
exactly the case for the proposed LCD reduction as can be seen in Fig. 2 on the left side, where we
end up with 5 samples for components (1, 1) and (2, 2) and 15 samples for components (1, 2) and
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Figure 2: Reduction of a Gaussian mixture density with four components and a varying number of samples per component
from 4000 points to 40 points. Blue: Random samples representing the Gaussian mixture density. Red: Reduced point
set. (left) LCD reduction. (right) Result of k-means clustering.
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Figure 3: Normalized histograms of projections onto x-axis for reducing M = 5000 samples of a two-dimensional standard
normal distribution to L = 50 samples. (left) Marginal of original samples. (middle) Marginal of LCD reduction result.
(right) Marginal of result of k-means clustering.

(2, 1). For k-means clustering, shown on the right side in Fig. 2, this is not the case, so the original
distribution is not maintained. In addition, the results of k-means clustering are not reproducible and
change with every run.

Another way to demonstrate that the proposed reduction method maintains the probability
mass distribution is to compare histograms of the samples before and after reduction. To simplify
visualization, histograms are calculated for the marginals in x-direction. Fig. 3 shows the histogram of
the originals samples on the left side. The histogram after reduction with the proposed LCD reduction
method is shown in the middle, while the histogram of the results obtained with k-means are shown
on the right side. It is obvious that the histogram of the LCD reduction is much closer to the original
histogram than the histogram of k-means.

We now consider M = 100 deterministic samples of a standard Normal distribution shown in
Fig. 4. The samples are calculated with the method from [20]. One sample is replaced with an outlier
located at [3.5, 3.5]T . The point set is reduced to L = 10 samples. The left side shows the result of the
LCD reduction. The samples are well placed and only slightly shifted due to the outlier. On the right
side, k-means clustering produces a result heavily disturbed by the outlier. In fact, one sample of the
reduced point set is placed directly on the outlier, which significantly changes the mass distribution.
Instead of representing 1 % of the distribution as before the reduction, the outlier now allocates 10 %.
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Figure 4: Blue: Deterministic samples representing a standard Normal distribution. One sample is replaced by an outlier
at [3.5, 3.5]T . Red: Reduced point set. (left) LCD reduction. (right) k-means clustering.
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Figure 5: Blue: Random samples representing a standard Normal distribution with some samples removed along three
vertical lines. Red: Reduced point set. (left) LCD reduction. (right) k-means clustering.

Finally, we investigate the robustness of the reduction methods with respect to missing data. For
that purpose, we generate 2500 samples and remove samples located within three vertical strips, see
Fig. 5. The remaining samples are reduced down to L = 25 samples. Fig. 5 left shows the result of
the LCD reduction, which almost gives the same results as before. The right side shows the result
of k-means clustering, where it is obvious that samples are more or less placed along lines and the
original mass distribution is not well maintained.

8. Discussion

A systematic approach for approximating a given Dirac mixture density by another one with
less components has been introduced that is radically different from current clustering or vector
quantization approaches. The (weights and) locations of the approximating density are calculated by
minimizing a global distance measure, a generalization of the well-known Cramér-von Mises Distance
to the multivariate case. This generalization is obtained by defining an alternative to the classical
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cumulative distribution, the Localized Cumulative Distribution (LCD), as a characterization of discrete
random quantities, which is unique and symmetric also in the multivariate case.

Although kernels are used to define the LCD, this is not a kernel method. The distance measure
is obtained by integrating over all possible kernels with all locations and widths, so that the final
expression does not contain any kernel.

The given Dirac mixture might be the result from random sampling or from certain processing
steps involving analytic Dirac mixtures. In any case, the resulting approximating Dirac mixture is
fully deterministic and the optimization process gives reproducible results.

Compared to clustering methods that find cluster heads minimizing the distance to their nearest
neighbors, which is a local method, the LCD reduction globally matches the mass distributions of
the given point set and its approximation. This leads to a smooth distance measure with almost no
local minima that can be efficiently minimized with standard optimization procedures. However, it is
important to note that due to its operating principle the proposed reduction method does not provide
a mapping from old components to new components.

Constraints on the state variables can easily be considered when performing the approximation of
the given density. An obvious application is the explicit avoidance of certain regions in the state space
in order to obey certain physical constraints. However, an even more interesting application is the
interpretation of the measurement equation in the Bayesian filtering step as an equality constraint for
the state variables once an actual observation is available. This opens the way for more advanced
filtering techniques in the case of Dirac mixture densities other than reweighing the individual
component by the likelihood function.

Large data sets occur when performing Dirac mixture based state estimation in high–dimensional
spaces or when considering product spaces of Dirac mixture densities. For a very large number of
components, the computational effort for performing a direct reduction might be too large. For
coping with this complexity issue, the proposed approach offers the unique feature of hierarchical
approximation. For that purpose, the data set is decomposed into several smaller sets that are
individually approximated. The resulting Dirac components of the individual approximations are then
collected into a single approximating Dirac mixture, which subsequently is further approximated to
yield the desired number of components. Of course, this approximation hierarchy may consist of more
intermediate approximation steps.
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A. Gradient of Distance Measure

Taking the derivative of the distance measure in (2) with respect to a location x
(η)
ξ gives

G
(η)
ξ = ∂D

∂x
(η)
ξ

= −2
∫ bmax

0

1
bN−1

∫
RN

(
F̃ (m, b)− F (m, b)

) ∂F (m, b)
∂x

(η)
ξ

dmdb ,

with
∂F (m, b)
∂x

(η)
ξ

= −wxξ
x

(η)
ξ −m(η)

b2

N∏
k=1

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2

 .

In the following, the two parts of G(η)
ξ will be treated seperatly according to

G
(η)
ξ = G

(η,1)
ξ −G(η,2)

ξ . (A.1)

The first part is given by

G
(η,1)
ξ = −2

∫ bmax

0

1
bN−1

∫
RN

F̃ (m, b)∂F (m, b)
∂x

(η)
ξ

dmdb .
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By using the expressions for F̃ (m, b) and ∂F (m,b)
∂x

(η)
ξ

, we obtain

G
(η,1)
ξ = 2wxξ

∫ bmax

0

1
bN−1

∫
RN

x
(η)
ξ −m(η)

b2

N∏
k=1

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2


M∑
i=1

wyi

N∏
k=1

exp
(
−1

2
(y(k)
i −m(k))2

b2

)
dmdb

.

Combining the product terms gives

G
(η,1)
ξ = 2wxξ

M∑
i=1

wyi

∫ bmax

0

1
bN−1

∫
R

x
(η)
ξ −m(η)

b2 exp

−1
2

(
x

(η)
ξ −m(η)

)2

b2


exp

(
−1

2
(y(η)
i −m(η))2

b2

)
dm(η)

N∏
k=1
k 6=η

∫
R

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2


exp

(
−1

2
(y(k)
i −m(k))2

b2

)
dm(k)db

.

For further simplification, the equality∫
R

zi −m
b2 exp

(
−1

2
(zi −m)2

b2

)
exp

(
−1

2
(zj −m)2

b2

)
dm

=
√
π
zi − zj

2 b exp
(
−1

2
(zi − zj)2

2 b2

)

is used together with the equality (3), which leads to

G
(η,1)
ξ =π

N
2 wxξ

M∑
i=1

wyi

(
x

(η)
ξ − y

(η)
i

)
∫ bmax

0

1
b

N∏
k=1

exp

−1
2

(
x

(k)
ξ − y

(k)
i

)2

2 b2

 db
or equivalently to

G
(η,1)
ξ =π

N
2 wxξ

M∑
i=1

wyi

(
x

(η)
ξ − y

(η)
i

)

∫ bmax

0

1
b

exp

−
1
2

N∑
k=1

(
x

(k)
ξ − y

(k)
i

)2

2 b2

 db
.

With ∫ bmax

0

1
b

exp
(
−1

2
z

2 b2

)
db = −1

2 Ei
(
−1

2
z

2 b2
max

)
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for z > 0, the expression

∂D

∂x
(η)
ξ

= π
N
2

2 wxξ

L∑
i=1

wxi

(
x

(η)
ξ − x

(η)
i

)
Ei

−
1
2

N∑
k=1

(
x

(k)
ξ − y

(k)
i

)2

2b2
max


is obtained for component index ξ = 1, . . . , L and dimension index k = 1, . . . , N .

The second part is given by

G
(η,2)
ξ = −2

∫ bmax

0

1
bN−1

∫
RN

F (m, b)∂F (m, b)
∂x

(η)
ξ

dmdb .

By using the expressions for F (m, b) and ∂F (m,b)
∂x

(η)
ξ

, we obtain

G
(η,2)
ξ = 2wxξ
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0
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x
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Combining the product terms gives
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With ∫ bmax

0

1
b

exp
(
−1

2
z

2 b2

)
db = −1

2 Ei
(
−1

2
z

2 b2
max

)
for z > 0, we obtain

G
(η,2)
ξ = π

N
2

2 wxξ −
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wyi

(
x

(η)
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(η)
i
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(
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i

)2

2b2
max


for component index ξ = 1, . . . , L and dimension index k = 1, . . . , N .

By combining the two results for G(η,1)
ξ and G

(η,2)
ξ according to (A.1), we obtain the following

Theorem.
Theorem A.1. The gradient of the general distance measure in Theorem 4.1 with respect to the
locations of the Dirac components is given by

∂D

∂x
(η)
ξ

= π
N
2

2 wxξ

{
L∑
i=1
wxi

(
x

(η)
ξ − y

(η)
i

)
Ei

−
1
2

N∑
k=1

(
x

(k)
ξ − y

(k)
i

)2

2b2
max



−
M∑
i=1
wyi

(
x

(η)
ξ − x

(η)
i

)
Ei

−
1
2

N∑
k=1

(
x

(k)
ξ − x

(k)
i

)2

2b2
max


}

for component index j = 1, . . . , L and dimension index k = 1, . . . , N .
For large bmax, the Ei–function in Theorem A.1 can be approximated according to (5). Hence, we

have

Ei
(
− z

4 b2
max

)
≈ Γ− z

4 b2
max

+ log
(

z

4 b2
max

)
≈ Γ− log

(
4 b2

max

)
+ log(z)

= −Cb + log(z)
for z > 0. With

−Cb

{
L∑
i=1

wxi

(
x

(η)
ξ − x

(η)
i

)
−

M∑
i=1

wyi

(
x

(η)
ξ − y

(η)
i

)}

= Cb

(
L∑
i=1

wxi x
(η)
i −

M∑
i=1

wyi y
(η)
i

)
,

we obtain the next Theorem.
Theorem A.2. For large bmax, the gradient of the distance measure with respect to the locations of
the Dirac components is given by

∂D

∂x
(η)
ξ

= π
N
2

2 wxξ

{
L∑
i=1

wxi

(
x

(η)
ξ − x

(η)
i

)
log

(
N∑
k=1

(
x

(k)
ξ − x

(k)
i

)2
)

−
M∑
i=1

wyi

(
x

(η)
ξ − y

(η)
i

)
log

(
N∑
k=1

(
x

(k)
ξ − y

(k)
i

)2
)

+Cb ·
(

L∑
i=1

wxi x
(η)
i −

M∑
i=1

wyi y
(η)
i

)}
,

(A.2)
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for component index ξ = 1, . . . , L and dimension index η = 1, . . . , N .

Corollary A.3. For equal expected values, the optimal locations xi =
[
xi, yi

]T
of the components

i = 1, . . . , L of the approximating Dirac mixture density are obtained by solving the following N · L
equations (necessary conditions)

M∑
i=1

wyi

(
x

(η)
ξ − y

(η)
i

)
log

(
N∑
k=1

(
x

(k)
ξ − y

(k)
i

)2
)

=
L∑
i=1

wxi

(
x

(η)
ξ − x

(η)
i

)
log

(
N∑
k=1

(
x

(k)
ξ − x

(k)
i

)2
)

,

(A.3)

for component index ξ = 1, . . . , L and dimension index η = 1, . . . , N .
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