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Abstract

We assume that a finite set of moments of a random vector is given. Its underlying density is unknown.
An algorithm is proposed for efficiently calculating Dirac mixture densities maintaining these moments
while providing a homogeneous coverage of the state space.

1. Introduction

We consider a sequence of mappings Densities: True and Dirac mixture approximation, L=20, M=6
cr= [ mu() Fo) do m N
X 05} /

from a probability density function f(z) to the 04l N / \ ]
so-called moments ey, for k = 0,1, ..., where X is ; / \
a Polish space. Examples for X are the set of real = 93] 1
numbers R, the N-dimensional Euclidean space o2k \ / l
RY, the unit interval [0, 1], C, CV, the unit circle \_
St ={z € C: |z| = 1}, and so forth. Here, we 01T 1
focus on the N-dimensional Euclidean space RY. 0 . . ; . ) . !

We are interested in the inverse problem of -4 3 -2 0 1 2 3 4

deducing the probability density function f(z)

from these mapping given the moment sequence. Figure 1: Maximum entropy Dirac mixture density (purple)

This is called the moment problem. Here, we focus with 20 components and prescribed moments up to order 6.

on the case that a finite moment sequence ey, for The underlyir.lg continuous density (yellow) for generating
. . . the moments is unknown.

k =0,1,...,K is given. The problem is then

called the truncated moment problem.

Various types of moments can be considered depending upon the functions my(z), k =0,1,..., K.
This includes the common power moments and trigonometric moments, which are useful for periodic
state spaces such as the unit circle. Here, we focus on power moments.

We can now ask several fundamental questions such as: Does a density f (z) exist for the given
moment sequence e;, k = 0,1,...,K? When a density f (z) exists, is it uniquely defined by the
moment sequence? When it is not uniquely defined, how is the set of densities with the given moment
sequence characterized?

So far, we did not pose restrictions on the probability density function f (z) to be reconstructed from
the moment sequence. So, f (z) can be selected from the space of density functions, which lead to an
infinite-dimensional problem. More practical questions on existence, uniqueness, and characterization
can be asked, however, when we restrict ourselves to finite-dimensional approximations of the underlying
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true density f(z). We consider specific densities f(z) with a finite-dimensional parametrization, where
we have to select a density type with a given structure. In some cases, it is also useful to consider
restrictions on their parameter sets. For example, we could ask whether a Gaussian mixture density
with three components exists for a given moment sequence and whether it is unique.

There are many types of parametric densities available such as Gaussian densities, Gaussian
mixture densities, and exponential densities. In this paper, we consider Dirac mixture densities f(z)
for approximating the underlying true density f(z).

Up to now, the only information available about the underlying true density f(z) was the moment
sequence of length K + 1. This restricts the number of (independent) parameters of the approximating
density f(z) to be less than or equal to K + 1. Restricting the number of parameters to K + 1 is
especially problematic as typically the number of available moments is itself limited. For the case
of power moments of up to a certain order M, the number of moments quickly increases with the
number of dimensions N and the order M. Even for a moderate number of dimensions, calculating
higher-order moments becomes intractable.

A good coverage of the important regions of the state space with the approximating density f(x)
is mandatory in many applications. For Dirac mixture densities, this means that we need a large
number of components, equivalent to a large number of parameters to be determined. When more
density parameters than given moments have to be determined, we face an underdetermined inverse
problem with an infinite solution set. In that case, additional information about the underlying true
density f (z) such as its support, shape, symmetries, or its smoothness is required. Alternatively, we
have to directly impose additional assumptions on the approximating density f(x). This information
can be used to define a regularizer for picking out a single solution with the desired properties.

An interesting border case is the availability of the full underlying true density f (z) together with
a few of its moments. In that case, we want to find an approximating density f(x) that maintains the
given moments and is in some way as close as possible to the true density.

A detailed problem formulation is given in the following section including a compact representation
of given moments up to a certain order and some words on regularization. Sec. [3] gives an overview of
the state of the art.

2. Problem Formulation

T
A random vector x = [wl, x9,...,T N} € RY is characterized by a finite set of moments only.

The underlying true probability density function f (z) of x is unknown. The true density f (z) can be
a continuous density or a discrete density on the continuous domain R,

Our goal is to represent the unknown probability density function f (z) of the random vector &
by an approximate density f(z) that has the desired moments. For the approximation, we focus on
discrete probability density functions f(z) on the continuous domain R”Y. Here, we use a so called
Dirac mixture density f(x) with L Dirac components given by

L L
fl) =) file) =D wi-d(z—1,) (2)
i=1 i=1

with positive weights, i.e., w; > 0 for i = 1,..., L, that sum up to one, i.e., ZZ'L:1 w; = 1, and locations
Z; with components Zy; for dimension k with k=1,...,Nand &; #2; fori=1,..., L, j=1,...,L,
i # j. The locations are collected in a matrix X = {21,@2, .. ,@L} e RVxL,

Our goal is to systematically find a Dirac mixture density f (z) in that maintains the moments
of the true density f(z) by adjusting its parameters, i.e., its weights w; and its locations z; for
i =1,..., L. In this paper, we focus on adjusting the locations only. The component weights are all
equal. In addition, we assume that a solution exists, i.e., the number of components L is selected to
be large enough so that locations exist that fulfill the given moments defined in the next subsection.
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We define a parameter vector n € S = containing the parameters as

T
and write f(z) = f(z,n).

2.1. Given Moments

We consider power moments for characterizing the random vector x, so we will now specify
concrete functions my(z) in . For denoting the moment order, we employ a multi-index notation

with K = (K1, K2,..., kN ) containing non-negative integer indices for every dimension. We define

k| =K1+ Ko+ ...+ kN, K+i= (m—ki,m—i—i,...,ﬁN—i—i) with ¢ € Z such that k +¢ > 0, and
=it - ah? .- 2N, For a scalar ¢, the expression k < ¢ is equivalent to k; < ¢ for k =1,2,...,N.

The power moments of a random vector  with density f(x) are given by

e = 2" f(x)dz (4)
RN
for k € N}). For zero-mean random vectors z, the moments coincide with the central moments.
Moments of a certain order m are given by e, for |k| = m. We define a multi-dimensional matrix
Ejs of moments of up to order M as

En(k + 1) = {e"’" Il < M (5)

unspecified elsewhere

with & < M and e, from . We increase the multi-index k by 1, so that the matrix Ej; €
RMAD*(M+1)x..x(M+1) jg indexed from 1 to M + 1 in every dimension.

The matrix Ej; contains unspecified elements for || < M that can either be set to zero in a
full matrix or omitted in sparse matrices (when the chosen matrix implementation supports sparse
matrices). With ICnas the set of all valid index sequences given by

K:NM:{I{:|K,|§M} (6)

the number of specified elements, i.e., the number of moments of up to order M, is defined as
Py = |Kna| and is given next.

Lemma 2.1. For an N-dimensional random vector, the number of moments up to order M is

(M + N)!

Py = N

Proof. Elementary. O

For N = 10 dimensions, the number of moments up to order M = 3 is Py = 286, for M =5
already Py = 3003.

Of course, there is no need to specify all possible moments for k| < M. In a practical application,
there will generally be a lot more unspecified elements.

2.2. Regularization

When the length Pr, = L- N of the parameter vector 7 is larger than the number of given moments,
the parameters of f(z,n) are redundant and a regularizer for f (z,7n) is required. Here, regularization
is performed by selectir;g the least informative Dirac mixture, e.g.,ithe one having maximum entropy.
As the Shannon entropy for Dirac mixture densitys is not well defined, we use the entropy of a
corresponding piecewise constant density. This results in a constrained optimization problem, where
the most homogeneous Dirac mixture approximation f(z,n) is desired that fulfills the given moments
and maximizes the entropy. a



3. State of the Art

For determining P, parameters of a Dirac mixture density in from a set of Pyjs moments, we
have to distinguish three cases:
i) Py < Py, the overdetermined case, i.e., the number of parameters is smaller than the number
of moments.
ii) Pr = Py, the fully determined case, i.e., the number of parameters is equal to the number of
moments.
iii) Pr > Py, the underdetermined case, i.e., the number of parameters is larger than the number
of moments.

3.1. Pr, < Py, the Overdetermined Case

For the overdetermined case, no literature seems to be available. This case is interesting from a
theoretical point of view and it will be discussed in more detail later in this paper. From a practical
point of view, it makes sense when for some reason the redundancy in the moments can be used to
better estimate the parameters of the desired Dirac mixture density. On the other hand, as discussed
above, many Dirac components are required to cover the interesting parts of the state space, which
leads to a large amount of parameters. It might then be impractical to calculate more moments than
parameters.

3.2. Pr, = Py, the Fully Determined Case

The fully determined case has been treated a lot in literature in the context of nonlinear Kalman
filtering. Moment-based approximations of Gaussian densities are the basis for Linear Regression
Kalman Filters (LRKFs) [I]. Examples are the Unscented Kalman Filter (UKF) in [2] and its scaled
version in [3].

The case of maintaining the first two moments received most attention. Moments of up to second
order can be maintained by a Dirac mixture density with two Dirac components per dimension with
an optional additional point placed at the mean. This has the huge advantage that the number of
components only grows linearly with the number of dimensions.

Maintaining higher-order moments is important for two reasons: First, even for Gaussian densities,
it makes sense to explicitly consider the higher-order moments as the simplest Dirac mixture (the one
with two points per dimension) does not possess the same higher-order moments as a Gaussian density.
Second, for non-Gaussian densities higher-order moments are essential for capturing asymmetry,
multimodality, and so forth.

Third-order moments are considered in [4]. A Dirac mixture density with 2N + 2 weighted
components is designed that maintains moments of up to second order and, in addition, minimizes the
third-order moments. Minimizing the third-order moments is motivated by an underlying Gaussian
density, but is not useful for general densities, where asymmetries can lead to nonzero third-order
moments.

Under several strong assumptions, Dirac mixture densities with prescribed higher-order moments
have been derived in [5]. Assumptions include a placement of components on the coordinate axes only
and symmetric densities, so that all odd moments are set to zero. For the actual derivations, Gaussian
densitys were assumed and the point sets were limited to 4N + 1 and 6N 4+ 1 samples with N the
number of dimensions.

[6] proposes two methods for constructing scalar Dirac mixture densities with arbitrary first
three moments. The first method is a direct approach based on solving for the parameters of a Dirac
mixture density with three weighted components given the first three moments under certain symmetry
conditions. Existence of a solution is not guaranteed. The second method is an indirect approach,
where a Gaussian mixture density with two components is matched to the given moments, where
two degrees of freedom remain to be set by the user. In a second step, two Dirac mixture densities
with three components are calculated matching the first two moments of the individual Gaussian



components of the Gaussian mixture density. This results in a final Dirac mixture density with six
components matching the given three moments.

Dirac mixture approximation of circular probability density functions analogous to the UKF
for linear quantities is introduced in [7] for the von Mises distribution and the wrapped Normal
distribution. Based on a closed-form expression for matching the first circular moment, three Dirac
components are systematically placed by exploiting symmetry. In [§], a closed-form solution is derived
for a symmetric wrapped Dirac mixture density with five components based on matching the first
two circular moments. This Dirac mixture approximation of continuous circular probability density
functions has already been applied to sensor scheduling based on bearings-only measurements [9]. The
results have also been used to perform recursive circular filtering for tracking an object constrained to
an arbitrary one-dimensional manifold in [10].

3.8. Pr, > Py, the Underdetermined Case

We will now consider the case of more parameters than given moments. As the solution of this
inverse problem is not unique, it either requires more information about the underlying density to be
reconstructed or assumptions on the desired Dirac mixture density. In either case, we will perform
regularization to guarantee a unique solution with the desired properties. We will consider prior
information in two different ways: Either the full density is given or we just know that the underlying
true density is smooth.

3.8.1. Full Density Available

When the full underlying true density is given, the most basic problem is to not maintain any
moment. Regularization is performed by minimizing a distance between the underlying true density
and its Dirac mixture approximation. As distances between continuous densities and discrete densities
on continuous domains are difficult to define, the densities are typically transformed to a different
representation before the distance computation is performed.

Methods for Dirac mixture approximation of scalar continuous densities based on a distance
between cumulative distributions with no moment constraint are introduced in [I1], 12] for a given but
arbitrary number of components. An algorithm for sequentially increasing the number of components
is given in [13] and applied to recursive nonlinear prediction in [14].

For arbitrary multi-dimensional Gaussian densities, Dirac mixture approximations are systemati-
cally calculated in [15]. The comparison of densities is performed by comparing probability masses
under kernels of arbitrary location and size. For this purpose, the so called Localized Cumulative
Distribution (LCD) is introduced in [I6]. A modified Cramér-von Mises distance is then defined based
on the LCDs. For the case of standard normal distributions with a subsequent transformation, a more
efficient method is given in [I7].

For multidimensional densities with given mean and given variances in every dimension, a method
for placing an arbitrary number of Dirac components along the coordinate axes is introduced in [I8§].
The multi-dimensional problem is broken down into one-dimensional problems that are solved by
minimizing the distance between cumulative distributions given the two moment constraints.

Multidimensional Dirac mixture approximations of arbitrary densities with an arbitrary component
placement and arbitrary higher-order moment constraints are calculated in [19]. Compared to [15], a
faster but suboptimal distance comparison is used. Instead of comparing the probability masses on all
scales as in [I5], repulsion kernels are introduced to assemble an induced kernel density and perform
the comparison of the true density with its Dirac mixture approximation. This method is adapted
to Gaussian densities in [20], where a closed-form expression for the distance measure is derived. In
addition, a randomized optimization method is employed instead of a quasi-Newton method. This has
the advantage of being easier to implement with only a slight decrease in performance. An approach
similar to the one proposed in [I9] has been derived for Dirac mixture approximation of circular
probability density functions with an arbitrary number of Dirac components in [21].



8.8.2. Smoothness Constraint

When it is only known that the underlying density is a smooth continuous density, the first idea
that might come to mind is to use an indirect approach. In a first step, a continuous density with the
desired moments is found. This can be any smooth parametric density from the exponential family
or from a mixture family such as a Gaussian mixture density. In a second step, a Dirac mixture
approximation of this continuous density is performed. This Dirac mixture approximation can be
performed with methods discussed before that calculate the Dirac mixture closest to the given density
while simultaneously maintaining the given moments.

The indirect approach has several disadvantages. It is difficult to take care of the given smoothness
condition by finding a parametric continuous density first as this includes finding both an appropriate
type of density with an appropriate structure and appropriate parameters. This step will most likely
introduce unwanted artifacts. In addition, the approximation becomes unnecessarily complicated as
we now have to solve two moment problems, a moment problem for the continuous density in the first
step and a moment problem for its Dirac mixture approximation in the second step.

We prefer a direct approach, where the smoothness constraint is fulfilled by finding the most
homogeneously distibuted Dirac mixture approximation under the given moment constraints. To the
author’s knowledge, no solution to this problem exists for the case of multi-dimensional densities with
an arbitrary placement of Dirac components.

3.4. Contribution of this Paper

We consider the finite moment problem of calculating parameters of a Dirac mixture density with
a given number of components and prescribed moments. The true underlying density is unknown. We
focus on redundant problems, where the number of parameters is (much) larger than the number of
given moment constraints. This is an underdetermined problem with an infinite solution set, so that a
regularizer is required to exploit redundancy. Here, we desire a Dirac mixture density with the most
homogeneous coverage under the given moment constraints.

For regularization, the entropy of the Dirac mixture density could be used. However, the Shannon
entropy is not well defined for discrete densities on continuous domains. Here, we propose to use
the entropy of the corresponding maximum entropy piecewise constant density approximation. This
approximation has a nice interpretation and, for given Dirac components, is given as the solution of a
convex optimization problem with linear inequality constraints. Regularization is now performed by
selecting the components of the Dirac mixture density in such a way that the entropy of this piecewise
constant density approximation is maximized.

The remainder of this paper is structured as follows. The piecewise constant density used for
guaranteeing a homogeneous coverage of the final Dirac mixture density is introduced in Sec. [4]
Calculating the Dirac mixture density with given moments and homogeneous coverage is discussed in
Sec. [l Implementation details are given in Sec. [6] An evaluation is conducted in Sec. [7] Conclusions
are drawn in Sec. 8l

4. Piecewise Constant Density Approximation

In this section, we derive a piecewise constant approximation of the given Dirac mixture. Its
parameters are calculated in such a way that the Shannon entropy is maximized. We now define the
specific form of piecewise constant density used in this paper.

Definition 4.1 (Piecewise constant density). We define a piecewise constant density as a mixture
with L components

L
p(z) =) Rz, d;)
i=1
where each component R(zx,Z;,d;), i =1,...,L is constant within a sphere of radius d; and given by

h; for [z — &;[| < d;
0 elsewhere
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with d; > 0 and the constant heights h; for each component to be determined. In addition, we desire
that the components are disjoint according to

di +dj <|Z; — Z;]] (7)
holds forall i =1,...,L, j=1,..., L with i # j.

T
Remark 4.1. The diameters d;, i = 1,..., L will be collected in a vector d = [dl, e dL} .

Remark 4.2. By exploiting symmetry, @ needs to be checked only fort=1,...,L—-1,j=1¢+1,..., L.
This results in a total of (L + 1)L/2 inequality constraints.

When the piecewise constant density is used as a representation of a given Dirac mixture with

weights w;, 1 = 1,..., L, we can calculate appropriate values for the constant heights h;.
Lemma 4.1. The constant height for each component h;, i = 1,...,L is given by
w;
h; = .
" Vn(dy)

with Vy(.) the volume of an N -dimensional hyper-sphere given by

ol

™

Vn(d) = N

Proof. As the components of the piecewise constant density p(z) according to Definition are
disjoint, it is possible to treat the individual components separately. We require that the probability
mass of the individual component i is equal to the mass of the corresponding Dirac component, which
is written as

/ R(z,%;,d;)de = w; .
]RN

By evaluating the left-hand-side, we obtain an integral over the N-dimensional hyper-sphere Sy (d;)
with radius d; as

which concludes the proof. O

We are now interested in piecewise constant densities that are as homogeneously distributed as
possible under certain constraints. For that purpose, we will maximize its Shannon entropy.

Lemma 4.2. The Shannon entropy h(p) of the piecewise constant density p(.) defined in Deﬁm’tion
s given by

L
w;
h(p) =cn = _ wilog <d]\27> :
i=1 i
where ¢y s a constant depending on the number of dimensions N.
Proof. The Shannon entropy of the piecewise constant density p(z) according to Definition is
defined as
hp) = E{~logp)} = — [ p(@)log (p(x) da .



Again, as the components of the piecewise constant density p(z) are disjoint, we can exchange
summation and integration, which gives

L
hp)==3_ | Rla i di)log (R(z, &;,d;)) dz

or

L
hp) = - g R(z, &;,d;) log (R(z, Z;,d;)) dz
— N
L
= =3 | hilog(h) dx
i=1 75N

L
= —Zhilog(hi)/ dz .

Vi (di)

With h; from Lemma [4.1] we obtain

which gives the desired result. O

Lemma 4.3. For a given Dirac mixture according to (@) with wetghts w; and components T;, © =
1,...,L, the corresponding mazimum entropy piecewise constant density in Definition [{.1] is the
solution to the optimization problem

PE—)

8.1. di >0 for i=1,...,L
L i=1,....L . .
ditdj <& = for . _ " withi# ]

Remark 4.3. The optimization (maximization) problem in Lemma is characterized by a concave
objective function as

oh (p(ﬂ, d)) _ i
ad; d;
for i =1,..., L and subject to linear inequality constraints. It remains to be investigated whether the

inequality constraints form a convex set, which would make the optimization problem convex.

Remark 4.4. In general, the optimization problem in Lemma requires a total of L(L + 1)/2

linear inequality constraints: d; > 0 for ¢« = 1,..., L, which gives L inequality constraints, and
di +dj < ||Z; = &;|| for i =1,...,L, j =1,...,L, and i # j, which together with symmetry gives
another L(L — 1)/2 inequalities. The scalar case N = 1 is an exception as the positions ;, i = 1,..., L

can be orderedﬂ. In that case, we have a total of 2L — 1 linear inequality constraints: d; > 0 for
t=1,....,Land Z; + d; < Ty41 —djy1 fore=1,..., L — 1.

"W .l.o.g., we can assume distinct positions, i.e., &; # gjfori=1,...,L,j=1,...,L, and ¢ # j. Otherwise, the
number of points would have been reduced accordingly.



5. Homogeneous Dirac Mixture Approximation with Given Moments

Our goal is an algorithm for the efficient calculation of a Dirac mixture density with given moments
and a homogeneous coverage of the state space. We will start with taking a look at the given moments.
They will act as constraints for the desired Dirac mixture density.

Given moments up to an order M are stored in the matrix Ej; from . These given moments
will be denoted as Ej;. The actual moments of the Dirac mixture density in are just denoted by
E s, so that our moment constraints can be written as

EM;EMv

where the left hand side depends on 7, i.e., we have Ep; = Ep(n).
Depending on the number of given moments compared to the number of parameters of the desired
Dirac mixture density, we have to distinguish between three different cases:

Case 1: In the first case, the number of given moments is larger than the number of parameters.
Now, the system of nonlinear equations given by

~ |
EM(ﬁ) — EM =0

is overdetermined as it has more equations than unknowns, i.e., number of parameters or length
of the parameter vector 7). In that case, we can calculate a least-squares solution as

- 2
n:argmaXHEM—EMH ,
B neS F

where ||| is the Frobenius norm defined for a matrix H € RM M2 with elements h;j, i =
1,....My,5=1,..., M5 as

IHl[F =

A generalization would be to introduce weighting factors for moments of different orders.

Case 2: In the second case, the number of given moments is exactly equal to the number of parameters.
In this case, we have to solve the system of nonlinear equations given by

=
Ey(n) —Ey =0 .

for the parameter vector 7. In the case of power moments, the left hand side leads to a system of
multi-dimensional higher—?)rder polynomials. Analytic solutions are only available in rare special
cases, so that numerical root-finding technqgies have to be applied. In addition, the solution is
not necessarily unique.

Case 3: The third and last case is the one that we will pursue further. Here, the number of moment
constraints is smaller than the number of parameters, so calculating the desired Dirac mixture
density is underdetermined. Just considering the moment constraints would give an infinite
solution set for the desired parameter vector 7.

We will now pursue the third case. In that case, the solution, the parameter vector of the Dirac
mixture density with the desired moments, is underdetermined. Thus, we have redundancy available
that can be exploited, so that we can impose additional constraints on the desired Dirac mixture
density to perform a regularization and to finally end up with a unique solution.

Here, we want the final Dirac mixture density to be not more informative as already specified by
the given moments: It should be as uninformative as possible within the given moment constraints. The

9



density in a Dirac mixture is encoded by both the weights and the “density” of its components, that is
their relative spacing. When we do not want to favor certain regions of the state space in terms of their
density, the Dirac mixture should be as homogeneous as possible in terms of weight distribution and
location distribution. Intuitively, for equally weighted components we somehow desire equal distances
between neighboring components or equivalently equal free spaces around each component. As this is
not very precise and does not hold for unequally weighted components, we need a formal definition of
homogeneity.

As a convenient, effective, and intuitive regularizer we use the corresponding piecewise constant
density for a Dirac mixture density as introduced in Sec. [d] The most homogenous Dirac mixture from
the infinite solution set then is defined as the one that maximizes the entropy of the corresponding
piecewise constant density.

For performing the optimization, we again couple the piecewise constant density with the Dirac
mixture in such a way that the locations Z; of the Dirac mixture are the midpoints of the spherical
support for each component of the piecewise constant density. The probability mass w; of the Dirac
mixture determines the height h; of each component of the piecewise constant density. In contrast to
Sec. [4] now both the diameters d; and the locations Z; are variables that are simultaneously optimized.
The optimization result provides the locations Z; of the most homogenous Dirac mixture. The optimal
diameters d; of the maximum entropy piecewise constant density are a by-product and can be used
for visualization.

Theorem 5.1. For given moments collected in the moment matriz Ep;, a Dirac mizture density with
the same moments and a corresponding mazximum entropy piecewise constant density is the solution
to the optimization problem

4] = arg max (n (p(n.0)))

s.t. EM:EM
d; >0 for i=1,...,L

di +dj — ||Z; — 2,/ <0 for ;;ﬁi with i # j
Of course, compared to the sole optimization of the diameters of the piecewise constant density
in Sec. [4] this optimization problem now has nonlinear constraints: The equality constraints for
maintaining the desired moments are typically nonlinear. Also the inequality constraints for avoiding
collisions of the spherical supports of the piecewise constant densities are now nonlinear as the locations
2, now are variables.

Remark 5.1. Tt is important to note that all the required statistics such as the moments are directly
calculated from the Dirac mixture. They are not calculated from the corresponding piecewise constant
density as this one solely serves regularization purposes.

6. Implementation and Complexity

Given the algorithm derived in the previous section, our goal is the efficient calculation of a Dirac
mixture density with given moments and a homogeneous coverage of the state space. Homogeneity is
achieved by a regularizer that picks out the most homogeneous solution from the infinite solution set
that we have in case of more parameters than moment constraint.

6.1. Symmetric Densities

Often, more information besides the moments is available about the true density f(z), such as
information on its support or on given symmetries. Even when information of this type is unavailable,
analogous assumptions could be made about the approximating density f(z).

10



Here, we consider a special case of symmetric densities, Dirac mixture densities f(z) that are
symmetric with respect to their expected value Ef {z}. We only have to specify L master components
f1, ..., fr and implicitly end up with 2L components, i.e., f1, ..., for, where the master components
fi,--., fr control slave components fri1,..., for,. The slave components are symmetric copies of the
master components in the sense, that

2 — Ep{z} = (& — Ef {z})

holds for ¢ = 1,..., L. The weights w; and the diameters d; are simply copied according to w;y1 = w;
and d;yp =d; fori=1,..., L.

Exploiting symmetries in this form has two major advantages. First, complexity is reduced as only
half as many variables have to be optimized (this does not depend upon the number of dimensions).
Second, the prescribed expected value is automatically maintained without an explicit constraint.

Remark 6.1. The master components are not confined to specific parts of the state space. They can
be located anywhere, which simplifies the implementation.

6.2. Complexity

Regularization is performed by maximizing the Shannon entropy of the corresponding piecewise
constant density, which requires complying with a number of constraints quadratic in the number of
Dirac components. We will now take a look at the complexity, especially the number of constraints to
maintain. The number of equality constraints (the moment constraints) is prespecified and for a given
order M bounded by @ For the inequality constraints, we have L linear positivity constraints for the
radii d;, i = 1,..., L of the piecewise constant density and (L — 1)L/2 nonlinear collision constraints.
The latter ones are the most critical and will be investigated further, where we distinguish the scalar
or 1-dimensional case and the N-dimensional case with N > 1.

In the scalar case, the number of collision constraints is reduced by maintaining an ordered list of
Dirac components. Then, only the distances between neighbors have to be considered, which reduces
the number of collision constraints from (L —1)L/2 to L — 1.

For the general multi-dimensional case with N > 1, the number of collision constraints does not
depend upon the dimension. However, it depends quadratically upon the number of components. For
a small number of components, say up to 20, this poses no problem. For more components, however,
the number of constraints needs to be reduced.

Reducing the number of collision constraints while still guaranteeing a correct solution will be
pursued in a follow-up paper. The key is to exploit the fact that simpler constraints can be devised
to check for collisions of the support spheres onto the coordinate axes. This is much simpler and
leads to fewer constraints. Non-colliding projections are a sufficient, but not a necessary, condition for
non-colliding supports. Based on this insight, expensive collision constraints have to be considered for
far fewer components. Details are given in the conclusions.

7. Evaluation

We will now demonstrate the performance of the proposed Dirac mixture approximation method
by some examples. One-dimensional and two-dimensional densities will be considered.

Remark 7.1. 1t is important to note, that in all cases where we consider underlying continuous densities,
these are only used for generating the moments. They are not known to the approximation methods!

For comparison, we employ a solver that directly finds a root of the underdetermined system of
equations given by the moment constraints. We use a Levenberg-Marquardt method for that purpose,
that we from now on call Levenberg-Marquardt Dirac mixture approximation method. Matlab provides
an implementation by calling fsolve with the appropriate options. This solver does neither provide
unique nor reproducible results.

In the simulations, both optimization methods, the Levenberg-Marquardt Dirac mixture approx-
imation method and the proposed maximum entropy Dirac mixture approximation method, are
initialized with a random parameter vector n drawn from a standard normal distribution.
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Densities: True and Dirac mixture approximation, L=6, M=2 Distributions: True and Dirac mixture approximation, L=6, M=2
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Figure 2: Comparison of two Dirac mixture approximation methods for an underlying Gaussian density. (Top row)
Result of solving the underdetermined moment constraints with the Levenberg-Marquardt Dirac mixture approximation
method. (Bottom row) Result of the proposed maximum entropy Dirac mixture approximation method. (Left column)
Comparison of the densities, where the (unknown) underlying Gaussian densities are shown in yellow and the Dirac
mixture densities in purple. (Right column) Comparison of the cumulative distributions, where the (unknown) underlying
Gaussian distribution is shown in yellow and the distributions of the Dirac mixtures in purple.

7.1. Examples for the One-dimensional Case

We begin with the simplest case of generating moments from a Gaussian density that are then used
for characterizing a Dirac mixture density. For a standard normal distribution, we calculate the first
two moments e, e2. Then, we employ the Levenberg-Marquardt Dirac mixture approximation method
and the maximum entropy Dirac mixture approximation method to find Dirac mixture densities with

= 6 components having exactly these moments. A comparison of densities and distributions is
shown in Fig. 2] where the top two figures show the result of the Levenberg-Marquardt Dirac mixture
approximation. This is just one representative result, as the solution is not unique and changes for
every optimization performed. The bottom row in Fig. 2] shows the result of the maximum entropy
Dirac mixture approximation. Here, the coverage is much more homogeneous. In addition, it becomes
clear that it comes close to the underlying Gaussian as a maximum entropy solution is considered
and the Gaussian is the continuous density with the highest entropy given a certain variance. This
convergence becomes even clearer when taking a look at Fig. [3] When the number of Dirac components
increases, in that case to L = 10 and L = 15, the generated Dirac mixture converges to the underlying
Gaussian although this density is not known to the algorithm.

A similar evaluation is now performed by using moments obtained from a Gaussian mixture
density with two components, weights w; = 0.4, we = 0.6, means m; = —1.5, m; = 1.5, and standard
deviations o1 = g9 = 0.7. Moments eg = 1,€e1,...,e4 up to fourth order are calculated according to
the appendix and used for generating a Dirac mixture with these moments. Fig. [4| shows the results
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Distributions: True and Dirac mixture approximation, L=10, M=2 Distributions: True and Dirac mixture approximation, L=15, M=2
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Figure 3: Dirac mixture approximation for an underlying Gaussian density with an increasing number of components L.
Only moments up to order M = 2 are maintained. (left) L = 10. (Right) L = 15. The Dirac mixture density quickly
approaches the underlying Gaussian, although this density is not known to the approximation method.

for L = 10 components, where the top row shows a comparison of densities and distributions for
Dirac mixtures obtained with Levenberg-Marquardt Dirac mixture approximation. Again, this is
only one possible result as the solution is not unique. The bottom row shows the result obtained
with maximum entropy Dirac mixture approximation, which is very homogeneous and close to the
underlying Gaussian mixture density in terms of its distribution.

Fig. [5| then shows that, for M = 6 moments, the maximum entropy Dirac mixture approximation
quickly converges to the underlying Gaussian mixture density as demonstrated for L = 15 and L = 25.

7.2. Examples for the Two-dimensional Case

For the two-dimensional case N = 2, we consider Dirac mixture densities maintaining moments up
to second order, i.e., egog = 1 (the normalization constant), eg1, €10, €11, €2, and egy are prespecified.
For the specific choice of moments corresponding to the axis-aligned normal distribution egy = 1,
eor =0, e10 =0, e11 =0, eg2 = 3, and eyg = 1, we obtain the results shown in Fig. [6] Here, symmetry
is enforced as introduced in Subsec. As a result, only 20 master components are optimized and 20
slave components follow accordingly.

It is obvious from Fig. [0] that the resulting Dirac mixture densities converge to a Gaussian density
with the given moments when the number of components increases. Again, the underlying density
shape, in this case the Gaussian, is not known to the Dirac mixture approximation method.

8. Conclusion

This paper provides an efficient algorithm for calculating Dirac mixture densities with given
moments and a homogeneous coverage of the state space. We focus on the case of fewer moment
constraints than parameters. Ensuring a unique solution and exploiting the redundancy by optimizing
the component arrangement is performed by regularization with respect to a corresponding piecewise
constant density. The most homogeneous Dirac mixture density is obtained by maximizing the entropy
of this piecewise constant density.

8.1. Applications

The proposed maximum entropy Dirac mixture approximation method will be used for generalizing
the Progressive Gaussian Filter introduced for generative system models in [22] and for systems with
given likelihoods in [23]. So far, the Progressive Gaussian Filter maintains moments up to second
order when progressively performing a measurement update. In addition, a Gaussian assumption is
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Densities: True and Dirac mixture approximation, L=10, M=4 Distributions: True and Dirac mixture approximation, L=10, M=4
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Figure 4: Comparison of two Dirac mixture approximation methods for an underlying Gaussian mixture density. (Top row)
Result of solving the underdetermined moment constraints with the Levenberg-Marquardt Dirac mixture approximation
method. (Bottom row) Result of the proposed maximum entropy Dirac mixture approximation method. (Left column)
Comparison of the densities, where the (unknown) underlying Gaussian mixture densities are shown in yellow and the
Dirac mixture densities in purple. (Right column) Comparison of the cumulative distributions, where the (unknown)
underlying Gaussian mixture distributions are shown in yellow and the distributions of the Dirac mixtures in purple. In
both cases, moments up to order M = 4 are maintained and the Dirac mixture comprises L = 10 components.

made. Using the proposed maximum entropy Dirac mixture approximation, higher-order moments
will be propagated without any density assumption.

The piecewise constant density for a given Dirac mixture density as derived in Sec. ] might also
be useful by itself in other contexts than providing a convenient density for plug-in estimation of the
entropy of a Dirac mixture density.

8.2. Extensions

Now, we will discuss several extensions to the basic algorithm described in this paper. First, we
discuss optimizing the weights in addition to the locations of the components of the considered Dirac
mixture density. Second, we focus on the complexity and how to decrease it. Third, we consider spaces
different from the Euclidean space RY.

Weights. In this paper, we focused on optimizing the locations of a Dirac mixture density only. Also
optimizing the weights gives another L — 1 degrees of freedom for L components (as the weights have
to sum up to one). This gives the advantage of potentially maintaining more moments for the same
number of components.

The downside of optimizing the weights is obvious: Now there are components of different
importance. Components with a small weight are almost negligible and do not carry much information
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Distributions: True and Dirac mixture approximation, L=15, M=6 Distributions: True and Dirac mixture approximation, L=25, M=6
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Figure 5: Dirac mixture approximation for an underlying Gaussian mixture density with an increasing number of
components L. Moments up to order M = 6 are maintained. (left) L = 15. (Right) L = 25. The Dirac mixture density
quickly approaches the underlying Gaussian mixture, although this density is not know to the approximation method.

although optimizing them is as costly as for large components. This is aggravated when components
are fed through a nonlinear system in order to calculate the output density. In that case, the weights
remain unchanged and the output weights are identical to the input weights. As the computational
cost of propagating components does not depend on the weight, this implies that lots of computational
power is spent for small output components with questionable usefulness.

The disadvantage of unequally weighted Dirac mixture densities becomes even more obvious
when considering multiplication with a likelihood function in a Bayesian filter step. Already small
components can potentially be weighted down even more making them useless, while for equally
weighted components there is more leeway before components degenerate.

Complexity. Let us briefly sum up the complexity of the algorithm described in this paper: For the
scalar case, the complexity of the optimization problem is low. We have to maintain M + 1 moment
constraints (when considering moments up to order M) and 2L — 1 inequality constraints to optimize
for L location parameter of the desired Dirac mixture density. For the multi-dimensional case, we face
two problems. First, the number of equality constraints corresponding to the number of moments up
to order M quickly increases with the number of dimensions IV so that calculating these moments for
a Dirac mixture density soon becomes intractable. Second, the number of inequality constraints grows
as (L 4+ 1)L/2 with the number of components.

For the multi-dimensional case, the first problem can be coped with by considering only the most
relevant moments, which depends upon the application. The second problem, that is the quadratic
growth of the inequality constraints, will be attacked by a two-step constraint hierarchy. The first step
uses more conservative dimension-wise collision constraints, which results in N(L — 1) constraints. In
the second step, multi-dimensional constraints are only assembled for the remaining Dirac components
that need further attention. This is expected to result in an additional O(L), say k L, constraints.
Together with the additional positivity constraint for the radii d;, ¢ = 1,..., L, we obtain a number
of about kL + N(L — 1) + L constraints. Hence, we trade an algorithm with a total number of
(L + 1)L/2 constraints for an algorithm with a number of k L + N(L — 1) 4+ L constraints, which is
more efficient when N < L(L —1 —2k)/(2(L — 1)). This is already the case for k =1, N = 2, and
L = 7. Implementation of these hierarchical constraints, however, is a challenge as the number of
constraints varies during runtime of the optimization procedure. Available optimization routines do
not seem be able to cope with a varying number of constraints.
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Figure 6: Plots of Dirac mixture densities maintaining moments up to second order M = 2 with different numbers of
components. (top left) L = 16. (top right) L = 20. (bottom left) L = 30. (bottom right) L = 40. Symmetry is enforced,
so that only 20 master components are optimized.

Alternative Spaces. The techniques presented in this paper for the case that no underlying density is
available, will be generalized to different Polish spaces X, especially to periodic spaces such as the
unit circle S as it has been done in [2I] for known circular probability density functions.
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Appendix A. Moments of Scalar Gaussian Density

When mean and standard deviation of a Gaussian random variable are given, all higher—order

moments and central moments can be deduced analytically. The central moments are given by

i—1
H job ieven ,
j=1
j odd
0 7 0odd ,

C;=Ey {(m — m)z} =

the moments by

E;=E{a'} = Z (;) Ci_gym®

with Cy (the zeroth central moment, the area under the density) is defined as Cy = 1.

Example Appendix A.1 (First Moments and Central Moments of Gaussian Density). The first
eight moments F;, ¢ = 1,...,8, and central moments C;, i = 1,...,8, of a Gaussian density with
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mean m and standard deviation ¢ are given by

Cy =0, Ey=m,

Co=0%, Ey=m’+0°,

C3=0, Es=m?+3mo? ,

C4:3J4, E4:m4+6m202+304,

Cs =0, Es =m® +10m3o? + 15mo? |

Coe=150% |, Bg=m®+15m*o® +45m?>c* +150° ,
Cr=0, Er=m"+21m°o? 4+ 105m3 0?4+ 105m o’ |

Cs =1050° , By = m® + 28 m% o2 + 210m* o + 420 m2 0% + 105 o°.

Appendix B. Moments of Mixture

We consider scalar mixtures of the form

P
flx) =" wy fi(w)
k=1
with
Wi > 0
for k=1,...,P and
P
Zwk =1
k=1

When the moments of the individual densities f(.) in the mixture are given by EW for k = 1,...

K]
the individual moments can now be added up to the moments of the mixture denoted by EZM

P
EM =% w,E® .
k=1

Finally, central moments of the mixture are obtained as
i

e =3 () (o)

j=0
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