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Abstract

We present a new online approach to track human whole-body motion from motion capture
data, i.e., positions of labeled markers attached to the human body. Tracking in noisy data can be
effectively performed with the aid of well-established recursive state estimation techniques. This allows
us to systematically take noise of the marker measurements into account. However, as joint limits
imposed by the human body have to be satisfied during estimation, first we transform this constrained
estimation problem into an unconstrained one by using periodic functions. Then, we apply the Smart
Sampling Kalman Filter to solve this unconstrained estimation problem. The proposed recursive state
estimation approach makes the human motion tracking very robust to partial occlusion of markers
and avoids any special treatment or reconstruction of the missed markers. A concrete implementation
built on the kinematic human reference model of the Master Motor Map framework and a Vicon
motion capture system is evaluated. Different captured motions show that our implementation can
accurately estimate whole-body human motion in real-time and outperforms existing gradient-based
approaches. In addition, we demonstrate its ability to smoothly handle incomplete marker data.

1. Introduction

Understanding human whole-body motion has been a fundamental research interest with numerous
applications in the robotics community. Great efforts have been done to establish procedures for
capturing, representation, processing, and transfer of human motion in robotics, such as the Master
Motor Map (MMM) framework [1] providing a unifying reference model of the human body, which
this work builds upon.

Today, several commercial systems offer an easy way to capture human motion and provide
accurate Cartesian measurements of labeled markers attached to the human body. Based on those
measurements, the whole-body human motion can be tracked by estimating certain parameters of a
given kinematic model, e.g., root pose and joint angles (see Fig. . However, like all measurements,
the captured marker positions suffer from noise. Hence, stochastic approaches are needed to obtain a
precise estimation of all the kinematic parameters of interest. Additionally, joint limits imposed by
the human body have to be satisfied during estimation.
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Figure 1: Single frame of a tracked motion from labeled markers. Measured markers on the left. Pose
estimated with the proposed approach on the right.

Tracking the human motion is equivalent to estimating the state of a discrete-time stochastic
nonlinear dynamic system, where the system state is the human pose. This allows us to employ a
recursive nonlinear state estimator to solve the human motion tracking problem. The advantage of
such an estimator is that it maintains a probability distribution of the state estimate rather than
only a simple set of values. The estimator uses this distribution to optimally fuse the current state
estimate with newly available noisy measurements to obtain an updated distribution. Popular state
estimators are (nonlinear) Kalman filters [2, [3, [4, 5] or particle filters [6l [7]. Due to the many degrees
of freedom (DoF) required for a detailed human pose, particle filters are not suitable for real-time
tracking as they would need a huge amount of particles to get meaningful state estimates. Hence,
we choose to use the Smart Sampling Kalman Filter (S2KF) [§] to estimate all parameters of the
kinematic model in real-time. Furthermore, we transform the constrained estimation problem into
an unconstrained problem with the aid of periodic functions. This is necessary to satisfy all the
imposed joint limits as Kalman filters can only estimate unconstrained quantities. Furthermore, the
problem of missing marker positions, e.g., due to occlusions, is addressed. Thanks to the recursive
state estimation approach, it is possible to ignore missing marker measurements while still obtain
good tracking results based on the remaining measurements only.

In [9], the authors solve the more general human motion tracking problem consisting of unlabeled
markers and an a priori unknown skeleton that has to be fitted to that marker data. Here, however,
we assume that the marker associations are already known and that we can make use of knowledge
about the kinematic model to get highly accurate estimates. Therefore, their special initialization
phase, i.e., a T-pose performed by the human, is not required by our approach. Moreover, the authors
are not clear about the real-time capabilities of their approach.

The problem of missing marker positions is addressed by the authors of [10]. Their solution is to
predict missing marker positions, use previously known marker positions, and get information based
on rigid body assumptions. Nonetheless, our proposed recursive state estimation approach implicitly
takes information of previous frames into account to be able to handle missing markers more easily.



Moreover, their tracking approach does not work with a fixed kinematic model. That is, they do
online joint localization in the marker point cloud, which results in a time-varying kinematic model.

A force-based approach in the fields of computer graphics is taken in [I1]. The authors solve the
tracking problem with a physical simulation. Unfortunately, their approach does not consider the
noise of the measurements.

The remainder of this paper is structured as follows. In the next Section, we briefly present the
aforementioned MMM framework. After that, in Sec. [3] we present a general way to track whole-body
human motion over time from noisy marker measurements using a constrained nonlinear Kalman
filter. Based on the MMM framework, we formulate a concrete implementation of this general tracking
approach in Sec. [d] We evaluate the implementation with a complex motion in Sec. 5] Finally, the
conclusions are given in Sec. [6]

2. The Master Motor Map Framework

The Master Motor Map (MMM) framework [12], [I] provides an open-source framework for the
capturing, representation and analysis of human motion, and its reproduction on humanoid robots. It
has been used in a number of different robotics research applications that leverage human motion, e.g.
[13, 14, [15]. At its core, the MMM framework provides the MMM reference model, a whole-body model
containing both kinematic and dynamic specifications for the human body based on well-established
biomechanical literature by Winter [16] and others. This reference model allows the representation of
human motion using 6 DoF for the root pose, 52 DoF for torso, extremities, head, and eyes, and 2 x
23 DoF for both hands. Fig. [2| shows the kinematics of the MMM reference model.

A central proposition of the MMM approach is to use the MMM reference model as a unique
intermediate model that allows the unifying representation of human motion provided by different
motion input sources, e.g., marker-less or marker-based motion capture, visual approaches based
on 2D or depth images, or data captured from inertial measurement units. Therefore, procedures
are needed that allow to transfer raw input data to the kinematic embodiment of the MMM model,
reconstructing position, orientation, and joint angle values of the model. In the terminology of the
MMM, these modules are called converters.

For the use of motion capture data as the input source, the MMM framework provides procedures
for the recording of motion that include a marker set for human whole-body motion capture comprising
a total of 56 marker locations at characteristic anatomical landmarks of the human bodsf!] Virtual
markers that match the markers placed on the subject are then added to the MMM reference model
at the corresponding locations. One converter is already provided by the MMM framework for the
reconstruction of human motion from motion capture [I]. This converter uses a framewise gradient-
based optimization approach based on the Jacobian matrix of the MMM kinematics to fit the model
pose and is compared to the new approach proposed in this paper in Sec.

3. Whole-Body Human Motion Tracking

In this Section, we present a new way to track the motion of a human based on noisy marker
measurements using a constrained nonlinear Kalman filter. The proposed approach is not limited to a
certain kinematic model of the human motion or how the measurements of the markers are obtained.

3.1. Problem Formulation

Given a kinematic model of the human body parameterized by J joint angles

n-depth specifications of the marker set are available online: https://motion-database.humanoids.kit.edu/
marker_set/
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Figure 2: Whole-body kinematics of the MMM reference model, including joints abbreviations

(from [1).

and root pose consisting of position
[T Y 21T
Ty = [rk7rk7 Tk]

in Cartesian space and orientation

O = [027 Oza OZ]T
in roll, pitch, and yaw anglesﬂ, our goal is to estimate the pose of a human at discrete time steps k.
The estimation relies on several unique markers attached to the human body at known positions, e.g.,
on a shoulder or hand that are observed and measured by a tracking system. At each time step k, the

tracking system provides us with a set
~(1 ~ (M
My = (g, My

of M labeled noisy marker positions mg) in Cartesian space. In addition, due to human joint

limitations, the estimated pose has to satisfy the bound constraint
ZJSGI(CJ)SUJ VjE{l,...,J} (1)

()

for all joint angles 6" with lower bound /; and upper bound ;.
8.2. From Model Parameters to Marker Positions

In order to infer the kinematic model parameters 6, r;, and o;, from the received marker positions
M. based on a nonlinear Kalman filter, we need a mapping from these parameters to each individual

marker position. This mapping consists of two parts. First, given a concrete pose (in form of the
parameters 0, r, and o;,), for each marker the forward kinematics of the respective kinematic chain

2Vectors are underlined and matrices are printed bold face.
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has to be computed. As a result, it is known where to expect all markers if the human has that
concrete pose. Second, like all measurements, the measured marker positions suffer from noise. Hence,
that noise has to be taken into account in order to obtain good estimation results, especially in case
of strong noise. Both together leads to the desired mapping

m” = b9 (ry, 00, 0,) + 00 (2)

where m,(f) denotes the i-th marker position in Cartesian space, ﬁ(i)(-, -,+) the forward kinematics for
(@) (@)

the i-th marker, and v, ” additive, zero-mean, and white Gaussian noise with covariance matrix R;,’.

The choice of R,(f) depends on the utilized tracking system. Moreover, it is assumed that the noise

vectors QS) and y,(cj ) with i # j are mutually independent. Note also the difference between m,(ci) and

@,(j): the first one is a random vector, whereas the latter one is a realization of that random vector.

3.8. Satisfying the Joint Angle Bound Constraints

The considered estimation task poses an additional challenge for Kalman filters: a (nonlinear)
Kalman filter, by design, only estimates unconstrained quantities. That is, directly estimating 6,
with a Kalman filter will violate the constraints . Recall that the estimate of a Kalman filter is
represented by a mean vector and a covariance matrix. In order to take the bound constraints properly
into account, it is necessary that (i) the mean vector must always lie inside the bounded region of the
state space, and (ii) the covariance matrix also has to reflect that the state space is bounded, that
is, the covariance matrix has to be smaller compared to an unconstrained state space. In literature,
there exist various approaches to incorporate constraints into Kalman filters.

o Perfect measurements [4] are designed for equality constraints and are not suitable for inequality
constraints. Hence, they cannot be applied to the considered bound constraint problem.

e Projection techniques [4] correct the posterior state mean after a Kalman filter prediction/update
step. Unfortunately, they cannot correct the posterior state covariance matrix as well.

e Pdf truncation [4] is an elegant way to respect linear inequality constraints and corrects both
posterior state mean and covariance matrix. However, it is computationally expensive for large
state dimensions as it requires several Gram-Schmidt orthogonalizations and eigendecompositions
of the state covariance matrix, which is not guaranteed to converge, and hence, makes this
approach unreliable.

e The sampling-based approach proposed in [17] can be seen as a numerical approximation of the
pdf truncation approach. The problem here is that situations may occur where all samples lie
outside of the constrained region and no constrained estimate can be obtained. This is analogous
to the known sample degeneracy problem of particle filters.

As we seek a real-time capable and accurate human motion tracking, we choose another way to
satisfy for all joint angles. We perform a parameter transformation using a periodic function
that is defined on (—o0, 00) but its range is limited to the interval [—1,1]. We introduce a new joint

) )

parameter @,(j for each joint angle Gl(cj according to the mapping

9;9):93‘(@](5)): J2 ]Sln(@](fj))-i- J 5 J

As a result, @,(Cj ) can take any value, i.e., it is unconstrained, while is always satisfied. It should be

noted that this periodic approach, however, is sensitive to large uncertainties in the parameters @](j ),
that is, its uncertainty should not be larger than the period of the periodic function to get meaningful
estimation results.



Alternatively, sigmoid functions like the hyperbolic tangent could also be used for such a transfor-
mation. However, a nonlinear Kalman filter has problems to properly update a joint angle estimate in
situations where it is near to a bound constraint as the gradient of a sigmoid function becomes very
small for large parameters.

Analogously to the vector 6, we define the joint parameter vector

J
o,=me,....el.

We also introduce the vector-valued function

that transforms all joint parameters back to their corresponding joint angles.

8.4. State Estimation with the Smart Sampling Kalman Filter

At this point, we can introduce the system state
T T M7
Ly = [ﬁk ) Ok ;@H (4)

that fully describes the constrained whole-body human motion at time step k. This state vector can
now be estimated with a usual nonlinear Kalman filter. A Kalman filter is a recursive state estimator
consisting of two alternating parts: (i) the prediction step that propagates the state estimate, that is,
mean and covariance matrix, from the last time step k£ — 1 to the current time step k and (ii) the
measurement update that corrects the predicted state estimate given a set of measurements.

First, we concentrate on the measurement update. Here, we have to define what the actual
measurement is that will be processed by the Kalman filter, and the measurement equation that
maps z; to that measurement. To obtain the measurement, we stack the received single marker

(4)

measurements m; "~ to a 3M -dimensional measurement vector

For the measurement equation, we combine the M marker mappings with , and stack them in
the same manner of which yields

m® B (ry,00,9(04) ] [V
: = : + 1| ,
" ' " (6)
ml(q ) h(M) (tkvgkzvg(@k)) ,U](C )
i h(zy,) o

where the zero-mean noise vector v, has the block diagonal covariance matrix
. 1 M
Ry = diag®RY",...,R(™) .

Of course, the order of stacking has to be the same for both and @ Otherwise, marker positions
would not be related to their corresponding measurements. Now, given a predicted state estimate by
state mean ii and state covariance matrix CZ, the following moments are computed based on the



measurement model @
my, = /h(l‘k) 'N@k;@iv CZ) day,

m / () — 1ing) - () — 1) T
N (23 27, CP) day, + Ry, (7)
€ = [ (e~ 2 () ~ )

where N (z; @i, Ci) denotes the Gaussian probability density function.
Together with the measurement , we get the posterior, i.e., the corrected, state estimate by
computing the posterior state mean according to

B =2y + Gy (CF) ™ (i, — i)
and the posterior state covariance matrix according to
) -1 ) T
Ci=CL-C(C) (™) .

Second, the prediction step requires a system equation that models the temporal evolution of the
system state between two measurement updates. Here, this means (slight) changes in the human
motion from one time step to the next one, e.g., a movement of the root position or moving an
extremity. A general system equation is given by

2y, = ag(zg_q) +wy, (8)

where w,, denotes zero-mean white Gaussian noise with covariance matrix Q. The function a;(+)
models the actual changes in the kinematic model parameters over time and should take any prior
knowledge about the human motion scenario into account. For example, it can rely on velocities to
predict where the human or its extremities will be in the next time step. Note that such velocities can
be estimated together with the actual kinematic model parameters by augmenting the state system
with such velocities. The noise, and therefore Qg, incorporates modelling errors into the prediction
and depends on the used tracking system and the elapsed time between measurement updates. Given
the system equation and the state estimate from the last time step by state mean zj,_; and state
covariance matrix C{_,, the Kalman filter computes the predicted state mean according to

i = / ar(zn 1) Nzp 51, C5 ) dayy (0)

and the predicted state covariance matrix according to

cr = / (a2 1) — 32) - (a (1) — 22)T-
N(zp_1;25_1,Ch_1) dzy_1 + Qi .

(10)

Up to this point, no concrete nonlinear Kalman filter has been chosen to compute the multi-
dimensional integrals in , @, and . Basically, every nonlinear Kalman filter such as the extended
Kalman filter (EKF) [4] or the unscented Kalman filter (UKF) [3] could be used. However, on the
one hand, the EKF relies on explicit linearization of the measurement model around the predicted
state mean, which requires the Jacobian matrix of @ and . Moreover, it does not incorporate the
uncertainty of the predicted state estimate into this linearization, making this approach sensitive to the
predicted state mean. On the other hand, the UKF relies on statistical linearization, which incorporates



the prior uncertainty and does not need any Jacobian matrix. Instead, the UKF propagates a set of
samples through the measurement /system model to compute the integrals. Unfortunately, the number
of samples is fixed and cannot be increased to obtain more reliable and more accurate state estimates.
To get rid of the limitations imposed by the EKF and UKF, we use the Smart Sampling Kalman
Filter (S2KF) [18, 8]. The S?KF also relies on samples to compute the integrals, but it can use an
arbitrary number of optimally placed samplesﬂ Hence, we can use more samples than the UKF to
improve the estimation quality, but only as many as possible to guarantee real-time capability.

Finally, to start with the recursive state estimation, an initial state estimate with initial mean
25 and initial covariance matrix C§ is required. These initial values depend on the quality of the
measurements and other prior knowledge of the human motion scenario, e.g., if it is known where the
human starts or what its initial pose is.

3.5. Working with Incomplete Measurement Sets

If the position @S) for the i-th marker cannot be obtained by the tracking system at time step k,
e.g., due to occlusions, we omit it from and the corresponding measurement function ﬁ(i)(-) from
@, and use only the remaining measured marker positions for the measurement update. That is, an
estimation of root pose and joint angles is still possible for that time step. However, due to the lack
of certain marker position measurements, the filter has less information about the current human
pose. Consequently, the estimation quality can be less accurate. Nonetheless, an estimation is still
possible thanks to prior knowledge of the pose, i.e., the predicted state estimate.

4. A New Converter for the MMM Framework

After describing the general whole-body human motion tracking approach based on constrained
nonlinear Kalman filtering in Sec. [3| we implement this approach for the kinematic model presented
in Sec. [2l Here, we select a subset of the joints from the MMM reference model based on the parts
of motion that can be estimated using our motion capture setup. That is, hands, eyes, and some
joints on shoulders and feet have been excluded. In total, J = 40 joints are used for the kinematic
model resulting in a system state dimension of 46. Moreover, root position and marker positions
are measured in millimeters and root orientation and joint angles are measured in radians (this is
important as it also defines the units of the noise covariance matrices R,(;) and Q).

In addition, the MMM marker set describes the placement on markers on the human body and
the MMM reference model provides the corresponding forward kinematics ﬁ(i)(-, -,+) required for the
measurement model @ We use M = 50 of those markers. Their positions are measured with a
Vicon MX10 system using ten T10 cameras. It is an optical motion capture system based on passive
(reflective) markers. The system records at 100 Hz, that is, every 10 ms we get a new set of markers
M. For the measurement update, the measurement noise properties of the Vicon system, i.e., the
covariance matrices R,(;), have to be known. Experimentally, we have found that the marker positions
provided by the Vicon system are disturbed approximately with

R = 1071, |

where I3 denotes the identity matrix of dimension three. To perform the measurement update, the
S?KF is configured to use 301 samples. This is more than six times the number of samples that would
be used by the UKF.

The highly accurate marker position measurements provided by the Vicon system allows us to
model the temporal evolution of the human motion with a simple random walk system model according
to

Ty = Tp_q + W -

3An open-source MATLAB implementation of the S?KF is available online: https://bitbucket.org/
nonlinearestimation/toolbox/
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That is, it is assumed that the system state does not evolve significantly in the 10 ms between two
measurement updates (only the uncertainty of the estimate will increase) and that the measurement
update corrects the state estimate adequately. As a consequence, the Kalman filter prediction can be
computed easily in closed-form with

Ci = Ck—l + Qk

that is, no sampling (like for the measurement update) is required at all. Furthermore, the system
noise covariance matrix is set to the time-invariant diagonal matrix

Q. = diag(25,25,25,1071°,...,1071%) .

For the initial system state estimate, we assume no prior knowledge about the human motion
scenario. This makes this implementation very versatile to track any human motion without a special
treatment. More precisely, we use the first set of available measurements My to initialize the S?KF.
The root position and its covariance is obtained according to

1 & 0)
ﬁOZMZmOZ )
=1
S:MZ@O 7o) - (mf) — )"

the orientation mean and covariance is set to

QO = [07 0, O]T
0 =10"°13 ,

and the joint parameters and their uncertainties are initialized with

©,=1[0,...,0]" ,
C§ =1071%1y ,

that is, each initial joint angle is set to the average of its bound constraints. Then, the initial system
state estimate is given by

550—[7"0700a@o] )
C¢ = diag(C}, C3, CF) .

5. Evaluation

In this Section, we evaluate the implemented human motion tracking approach from Sec. [] with
a performed handstand. Its Vicon motion recording was taken from the KIT Whole-Body Human
Motion Database [19], which provides a rich collection of raw human motion capture recordings for
numerous kinds of motion tasks in the industry standard C3D file format. The recording contains 675
frames (time steps). In all frames, the entire set of marker positions is available. That means that we
can work with a complete measurement set in all time steps.

We compare the new approach with the Jacobian-based MMM converter [I] mentioned in Sec.
In order to assess the human motion tracking performance, for each estimated pose (one for each time
step), we compute the expected marker positions using their respective forward kinematics. Then, we
compute the distances between the expected and the measured marker positions and subsequently
build the average over all these distances.
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Figure 3: Averaged distances between measured marker positions and marker positions expected by
the estimated pose. The red lines indicate the frames shown in Figures [5| and @
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Figure 4: Estimation runtime of the new approach. The evaluation is performed on an Intel Core
i7-3770 CPU.

The marker distances for the new approach (orange) and the Jacobian-based approach (green) are
depicted in Fig.[3] On the one hand, it can be seen that the new approach requires approximately
20 frames (only 200 ms) to converge. This can be explained with the nonlinear Kalman filter that
gradually improves its initial state estimate over time. However, after convergence, the marker
distances of the new approach do not change much over time, even when the pose changes drastically
at beginning and end of the handstand. It offers a total average marker distance of only 4 to 5 cm.
It is important to note that a further reduction in the marker distances is not straightforward. The
problem is that markers attached to the human body will never exactly coincide with the corresponding
marker positions defined in the reference model. On the other hand, the Jacobian-based approach
has problems to track the handstand motion. Although it can handle ordinary motions, like human
bipedal locomotion tasks well, it clearly has problems with such a complex motion as the handstand.
At beginning and end of the handstand, its average marker distances are over 60 cm. Also the general
marker distance level is much higher compared to the new approach.

In Fig. [ the runtime of the new approach is shown. Its runtime varies over time but stays always
below 8 ms. As the Vicon systems records at 100 Hz, the proposed approach can be used to track a
whole-body human motion in real-time. Moreover, Fig. [5|illustrates the recorded marker positions
and the corresponding poses estimated by the new approach for selected frames. Despite the short
runtimes, the handstand is tracked very accurately.
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Figure 5: Selected frames of a performed handstand. In the top row, measured markers. In the
bottom row, corresponding poses estimated by the proposed approach.

o
—-—-

Figure 6: Same frames as in Fig. l but with hidden markers. In the top row, measured markers,
where hidden markers are not shown. In the bottom row, corresponding poses estimated by the
proposed approach.
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Figure 7: Number of simulated hidden markers.

In contrast to the Jacobian-based approach, the new approach can handle incomplete measurement
sets as described in Sec. [3.5] To simulate markers that cannot be observed by the Vicon system for
some period of time, we randomly remove markers from the previously used handstand recording. More
precisely, in every frame each marker will become invisible for the next frames with a probability of
0.5 %. The number of frames is determined by drawing a random number from a Poisson distribution
with parameter A = 100, i.e., on average a marker will be hidden for 100 frames (one second). Hence,
over time the total number of hidden markers will vary from frame to frame. In order to get meaningful
results, we simulate this in 100 Monte Carlo runs and try to track the human motion in each run with
the randomly modified marker sets. Fig.[7] depicts the number of hidden markers over time for three
different simulation runs as well as the average over all runs. As can be seen, there are frames where
more than 25 of the 50 markers are not available for the motion estimation. Averaged over all runs
and frames, 16 markers cannot be observed.

Although markers are assumed to be hidden for the estimation, we still know the originally
recorded position. Hence, we can compute the same marker distances as described above (also for the
markers that were not available for the state estimation). The results (blue area) are also given in
Fig. [3. The upper bound of the blue area denotes the largest averaged marker distances occurred
for a run, whereas the lower bound denotes the smallest averaged marker distance. We see that the
missed markers can slightly increase the distance up to 9 cm. Nonetheless, the results are still very
good. Looking at the motion estimated from one simulation run in Fig. [f] including the remaining
markers available for processing, we see that the motion is very similar to the one in Fig.

6. Conclusions

In this paper, we proposed a new way to track whole-body human motion using measurements from
labeled markers attached to the human body. Tracking a human motion is equivalent to estimating
the state of a stochastic dynamic system. Hence, we chose to rely on the Smart Sampling Kalman
Filter (S?KF) to perform the human motion tracking. This recursive state estimation approach makes
it possible to systematically take the uncertainty of the marker measurements into account while
being at the same time very robust to the partial collusion of markers. However, before we could
apply the filter, we had to incorporate the joint limits imposed by the human body into the estimation
procedure. This was done by transforming the constraint estimation problem into an unconstrained
problem using periodic functions. An implementation of the proposed approach was built around
the kinematic reference model of the Master Motor Map and a Vicon motion capture system. The
evaluations showed that the proposed approach offers highly accurate estimates of complex whole-body
human motions, even if half of the markers could not be observed.
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