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Abstract—We propose a recursive particle filter for high-
dimensional problems that inherently never degenerates. The
state estimate is represented by deterministic low-discrepancy
particle sets. We focus on the measurement update step, where
a likelihood function is used for representing the measurement
and its uncertainty. This likelihood is progressively introduced
into the filtering procedure by homotopy continuation over an
artificial time. A generalized Cramér distance between particle
sets is derived in closed form that is differentiable and invariant
to particle order. A Newton flow then continually minimizes this
distance over artificial time and thus smoothly moves particles
from prior to posterior density. The new filter is surprisingly
simple to implement and very efficient. It just requires a prior
particle set and a likelihood function, never estimates densities
from samples, and can be used as a plugin replacement for classic
approaches.

Index Terms—State estimation, particle filter, particle flow,
homotopy continuation, progressive Bayes, differentiable particle
filter, set distance, generalized Cramér distance, Newton flow.

NOTE

This is a preliminary version of the manuscript prepared
as a basis for discussions during my plenary talk at the 2025
IEEE International Conference on Multisensor Fusion and
Integration (MFI 2025) at Texas A&M University, College
Station, Texas on September 3, 2025. The next version will
include sections on implementation details, state-of-the-art, and
an evaluation of the proposed filtering method.

NOTATION

Vectors will be indicated by small underlined letters, 0 and
1 are a vector of zeros and a vector of ones, respectively.
Random values will be denoted by small boldface letters, so
random vectors are small boldface underlined letters. Matrices
are denoted by capital boldface letters. The identity matrix of
dimension N is Iy.

I. INTRODUCTION
A. Estimation Problem to be Solved

We consider recursive estimation of the state of a nonlinear
dynamic system based on measurements sequentially arriving
at discrete time steps. The evolution of the system state
is described by a process model either in continuous time
by a stochastic differential equation or in discrete time by
a stochastic difference equation, both usually in state-space
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form. The relation of states to measurements is described by
a stochastic measurement model. The goal is to continually
provide an estimate of the true system state with each new
measurement.

Due to the uncertainties in both process and measurement
model, only an uncertain estimate of the state can be provided,
which is described by a probability density function (pdf). This
pdf is propagated through the process model (prediction step
or time update) and updated with a new measurement (filter
step or measurement update).

For performing time and measurement update, specific
density representations have to be selected. As performing
the prediction step for significant nonlinearities is demanding
for continuous densities, particle representations are typically
selected. These simplify the prediction step, but lead to
difficulties in performing the filter step. The focus of this
paper is a new method to execute the filter step.

B. Challenges of Particle-based Estimation

The prediction step entails propagating the particles forward
through the system model, which is relatively straightforward.
The filtering step, however, although looking almost trivial
at first glance, is far more complex to actually implement.
It requires finding a particle set compatible with both the
prediction and a given measurement. In a Bayesian setting, this
results in a multiplication of the prior density and a likelihood
function (resulting from measurement equation and actual
measurement). Naively performing the Bayesian update step
would result in a set of weighted particles for the posterior
density. Especially for “narrow” likelihoods, many particles
would receive zero weights, and not contribute to the density
representation. This effect is called particle degeneration, and
many methods for its avoidance have been published.

Many of the methods for restoring the health of a particle
set propose resampling methods that rely on the subsequent
prediction step. The bootstrap particle filter, for example, just
replicates particles according to their relative weight in the filter
step without changing their locations. Only the process noise of
the following prediction step is then responsible for introducing
particle variability. This leads to an undesired dependency of
the filter step from the parameters of the process model, e.g., its
noise covariance, and is also problematic for chaining several
filter steps without having intermediate prediction steps.

One of our goals for the filter developed in this paper is the
strict separation of the filter step from the prediction step: The
filter step should be self-contained.
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C. New Filtering Method: Key Ideas

In this paper, we advocate a radically different method
for particle-based filtering that inherently avoids sample
degeneration issues.

It is based on the idea of progressive Bayesian estimation in
[1, 2, 3], which employs continuous densities for representing
the posterior. Progressive estimation for Dirac mixture densities
(DMDs) was introduced in [4, 5], where direct discretization of
the artificial time related to the homotopy was used, resulting
in a discrete flow. In contrast, in this paper, ordinary differential
equations (ODEs) for continuous particle flows will be derived.
Compared to [6] the set distance measure from [7] is used.

The method consists of three main ingredients that will be
explained in detail in the following: (i) progressively introduc-
ing the likelihood by homotopy continuation, (ii) deterministic
sampling as density representation, and (iii) using a set distance
measure for deriving a Newton particle flow from prior to
posterior density.

a) Homotopy Continuation: Instead of performing the
filter step at once with the given likelihood function, an artificial
time ~ ranging between 0 and 1 is introduced, which is then
used for parametrizing the likelihood. For v = 0, no update is
performed. For v = 1, the original likelihood is recovered. The
posterior density is also parametrized with « so that it starts as
the prior density for v = 0 and moves towards the (unknown)
posterior for v — 1. For a particle representation, this so-called
homotopy continuation approach results in a particle flow over
the artificial time ~y.

b) Deterministic Sampling: For the density representation
by particles, we use deterministic samples (also called low-
discrepancy samples). Compared to random samples, (i) the
density is covered more homogeneously, (ii) the number of
particles required for coverage is reduced, (iii) statistical
properties, e.g., moments, show a much better convergence,
(iv) and reproducibility is ensured. In this paper, we use the
sampling method from [8] also used in [9].

c) Newton flow Induced by Set Distance Measure:
The flow induced by the homotopy continuation very rarely
produces exact results. In general, we have to be content with
approximations. This means that we have to continually track
the closest approximation to the true posterior over the artificial
time. Closeness is measured by a set distance measure, the
so called generalized Cramér-von Mises distance, that allows
the efficient comparison of DMDs and is differentiable w.r.t.
to the particle locations and weights. The optimal particle
approximation is tracked over artificial time « by a Newton
flow indced by this generalized Cramér-von Mises distance.

D. New Filtering Method: Unique Features

Here, we will give a short overview of the advantages of
the new filtering method and also of its differences w.r.t the
state-of-the-art.

a) Modest Assumptions: For performing the filter step,
the new method only requires (i) the prior density in the
form of a (possibly weighted) particle set and (ii) a likelihood
function. Nothing else is required! In particular, the underlying
continuous prior density is not required and no attempt

towards its reconstruction is ever made. This is the natural
setup encountered in recursive particle filtering, where the
last estimate is a particle set used in the next filter step.
Avoiding density reconstruction is especially important in
higher-dimensional spaces as density estimation from samples
is notoriously difficult here.

b) Mapping-free Flow: The new filtering method is
different from other particle flow filter in that it does not
calculate an explicit mapping for transporting particles. This
can be interpreted as a direct online optimization of the distance
measure versus finding a mapping policy first. This policy
is often found by interpreting the homotopic version of the
measurement update equation as a Fokker-Planck equation and
using the associated (stochastic) ordinary differential equation
(SDE) for moving the particles. This necessitates first finding
the SDE and second numerically solving it for calculating the
desired particle locations, which typically leads to numerical
issues due to, e.g., stiffness. In contrast, the new method directly
yields a closed-form ODE by calculating the gradient and
Hessian of the generalized Cramér-von Mises distance. This
ODE can be solved with standard methods.

c) Generality: Methods relying on explicit mappings
such as between the involved random variables are ultimately
restricted to calculating posterior particle sets. The reason is
that calculating the flow for Gaussian mixture densities (GMDs)
or exponential densities based on the SDE for the posterior
random variable (associated to the Fokker-Planck equation)
would add another layer of complication. In fact, the SDE is
a dynamical system describing the evolution of the posterior
random variable and thus, not even weight changes of a particle
set are possible (as the system mapping only changes sample
locations, but not sample weights). In contrast, the new filtering
method can be applied with different density representations.
See [10] for an early approach involving GMDs.

II. PROBLEM FORMULATION
A. Models

We consider a dynamic system with random state vector
x, € RY, defined at discrete time steps k¥ € IN U {0}. The
state evolves according to a nonlinear system equation

Ty = O (Ty, Uy, Wy, (1

with nonlinear (deterministic) function g (-, -,-), known input
uy,, and system noise wy,.

The state is usually hidden, i.e., x; is a latent variable not
directly available, and is indirectly observed via measurements
related to the state via the measurement equation

Y, = () + vy, ()

with nonlinear (deterministic) function b (-) and measurement
noise vy.

The models (1) and (2) relate random variables and their
realization, and we call them generative models. Corresponding
probabilistic models can be derived that describe the system
evolution and the measurement extraction via conditional den-
sities fx(2j11|2)) and fi(y, |z),). For a specific measurement
gk, the so-called likelihood function ka is obtained by

fi(@) = (@, |zy) - 3)



B. Representation of Uncertain Latent States

In the case of stochastic model and sensor uncertainties, the
latent state is represented by a probability density function (pdf).
Continuous pdfs such as Gaussian or Gaussian mixture densities
can be used in the case of linear systems. For nonlinear systems,
however, the required transformations are difficult to handle
for continuous densities, unless some form of linearization is
employed, which limits the achievable quality. Hence, often
sample/particle representations are used. In this paper, we
employ deterministic sample representations we call Dirac
mixtures, where the weights and locations are obtained by
optimization rather than by random sampling from a continuous
density.

C. Estimation and Challenges

We assume that the measurements g 1 QQ, arrive
sequentially and that we desire to provide a state estimate with
each new measurement. This requires the alternating execution
of a prediction and a filter step.

The prediction step, or time update, entails propagating the
estimated state density f(z;) at time step k to the next time
step k + 1 by using the generative description in equation (1)
or the probabilistic description f (. |z, ). This results in
the predicted state density f; (2, 1).

The filter step, or measurement update, uses a measurement
taken at time k to correct the given prediction ff (z;,) either
based on the generative measurement equation in (2) or the
likelihood function (3).

Remark II.1. Please note that in this paper, we focus on a
single filter step, omit the time index k, and change [} (-), fi(*)

t0 fp(-), fe()-

D. Filter Step for Continuous Densities

For a continuous prior density f,(z) and a continuous
likelihood function f7,(z), the exact Bayesian filter step for
calculating the desired continuous posterior density f.(z) is
given by

fol@) =+ fyl@) - Fule) @

with normalization constant

Ce = / Jp(@) - fr(z)dz )
RN

so that f]RN fe(z) dz = 1 holds. Calculation of the normaliza-
tion constant is in general a major computational burden.

E. Challenges for General Density Representations

The filter step in (4) is exact and assumes that the posterior
density can completely capture the shape of the true distribution.
This works well for simple linear systems. For nonlinear
systems, this only works when the posterior f.(z,7) lives
in a general infinite-dimensional distribution function space.
For densities with limited representation capabilities, i.e., finite
mixtures or finite particle sets, as required in practical imple-
mentations, the density type changes and/or the complexity

goes up. For example, a GMD becomes a non-Gaussian mixture
during the update or an equally weighted particle set becomes
an unequally weighted particle set.

In recursive Bayesian estimation, we desire the densities
describing the considered latent variables to be closed under
the measurement update step, at least in an approximate sense.
This means that for a prior density of a certain type, we want
the posterior density to be of the same type'. In that case,
we can use the resulting posterior as a prior for the next
recursion step without changing its mechanism. This means
that we have to find the best approximation of the resulting
posterior lying within the space of permissible densities. This
is equivalent to projecting the true posterior to the closest
permissible approximation, which requires a distance measure.

The optimization problem of finding the best approximative
posterior density among the permissible densities is typically
a complicated numerical minimization task that involves local
minima. It is exacerbated by the fact that the prior is not a
good initial guess, but usually the only available one.

F. Filter Step for DMDs

In this paper, we focus on the case that the prior density
fp() is not a continuous density, but given as a set of L
weighted samples (or particles) it can be formally written as a
DMD

L
folz) = wpi- 0z —=z,,) 6)
=1

with weights wy, ; > 0, ZiLzl wp,; = 1 and sample locations
Lp,i-
For prior DMDs, the posterior is also a DMD, and we can

omit the normalization constant from the Bayesian filter step

fe(g)O(fp(Q)'fL(ﬁ) ’ @)

as normalizing f.(x) becomes trivial. Plugging in f,(z) from
(6) gives

L
fe(a) o fr(z) - Z Wy,i - 6(z — ;)
P @®)
= ; Wi frlz,) 0z —x,,) -

We, 4

Normalization to obtain the posterior weights is simply
performed by
We 4

Wes = —5—— - 9
Zquzl We, i
The posterior DMD is now given as
) L
felz) = e b(z—Z.,) (10)
i=1

'Prior and posterior are then called (approximately) conjugate distributions.



G. Challenges for DMDs

The posterior f, (z) in (10) is derived from the straightfor-
ward application of the Bayesian filter step to Dirac mixtures.
Please note that in this case, only the weights change. The
posterior sample locations do not change w.r.t. the prior samples,
ie, ., = xz,,; for i = 1,..., L. This leads to a serious
problem: The samples are not equally weighted anymore and
do not equally contribute to the representation of the posterior.
Often, some particle weights are (close to) zero, in fact dying
out, leading to particle degeneracy. A typical scenario is large
system noise, which spreads the particles during the prediction
step combined with low measurement noise leading to “narrow”
likelihoods.

Many solutions, some systematic, many of heuristic nature,
have been proposed to solve the degeneracy problem, which
is a fundamental and difficult problem.

Our goal is to derive a Bayesian filter that inherently avoids
degeneracy without any heuristic approaches. It should be easy
to understand, simple to implement, numerically stable, and
robust.

III. HOMOTOPY CONTINUATION

In order to circumvent the problems coming with the one-
shot measurement update shown in the previous section, [1]
proposed to gradually introduce the information from the
measurement. According to [2], this is done by carrying out
the measurement update progressively over an artificial time +,
where +y ranges in the (arbitrarily selected) interval v € [0, 1]%.

For achieving the desired effect, we parametrize the likeli-
hood with the artificial time ~, resulting in fr(z,~). For the
initial value of v, v = 0, a likelihood is selected that either
allows a simple measurement update or that simply returns
the prior. The latter case is equivalent to f,(z,7) = ¢, where
we can select the constant ¢ to be 1. For the final value of ~,
v =1, we want to recover the original likelihood function. In
between the extreme values for v, i.e., v € (0, 1), we desire an
interpolation between the constant likelihood and the original
likelihood that is convenient to use and leads to the desired
estimation results.

In summary, see also [6, p. 8], the progressive likelihood
function f7,(z,~) parametrized by the artificial time - is given
by

1 v=0
fr(z,v) = < convenient interpolation € (0,1) (11)
fr(z) y=1

Plugging the parametrized likelihood into the Bayesian
update equation yields the true parametrized posterior

fe(g»'y) X fL(Q, ’Y) fp(l) .

There are infinitely many progression schedules and, strictly
speaking, a good schedule used depends on the specific filtering
setup, i.e., the prior density and the original likelihood. An

(12)

2Other intervals could be used when more convenient. This also includes
v € [0, o0].

intuitive and generic progression schedule is attained by taking
the power of the original likelihood as

fo(z,y) = [fo(@)]” .

This obviously reduces to fr(z,v = 0) =1 and fr(z,v =
1) = fr(x). As typically most of the change in the posterior
caused by changes in ~y is experienced for small ~, a generaliza-
tion is to use nonlinear functions of v with g(y = 0) = 0 and
g(y = 1) =1 that start out with a smaller slope around zero
such as g(y) = v2. The exponentiation with such a function
gives a parametrized likelihood of the form

frlz,y) = [fr (@)’

13)

(14)

Its derivative is

fL(L v) = % { [exp (log (fL(x)))}g(W)}

_ % {exp (90 108 (1))}
=log (fr(z)) g(v) fr(z) .

In many applications, we assume additive Gaussian measure-
ment noise, which leads to likelihoods from the exponential
family. For these likelihoods, we obtain simpler expressions due
to the logarithm taken above. For additive zero-mean Gaussian
noise with covariance matrix C,, and g(v) = =, the likelihood
function is

fr(z,7) =exp <— v % (y—h(z)) C ' (y - h(f)))

15)

(16)

IV. NEWTON FLOW INDUCED BY DISTANCE MEASURE

In a progressive Bayesian particle flow, a given intermediate
posterior density undergoes continual changes for increasing
artificial time ~y under the influence of the homotopic changes of
the likelihood function. Hence, we require a distance measure
that matches a slightly (infinitesimally) changed posterior
density with an approximation from the desired density class.
For particle sets, infinitesimal weight changes have to be
instantly compensated by suitable location changes as we want
to keep all weights equal.

We start with the definition of an abstract distance measure.
The ODE for describing the flow will be derived in two steps.
In the first step, we will derive a so-called iterative flow where
the given true posterior remains unchanged over the flow. Just
the approximative posterior is changed by the flow. In the
second step, a so-called recursive ODE is derived, where the
reference density is replaced by the approximation at either
discrete time steps or continually.

A. Abstract Distance Measure

We are given a reference density fe(g, ~) depending on
the artificial time ~ and its approximation f(x,7n(v)). The
approximate posterior depends on a parameter vector 7)(7) that
implicitly depends on  as it changes with changes in 7.



An abstract distance measure for comparing fe (z,7) and
fe(z,n(7)) is written as

D(n),7) = D (Felw. ). fe (z.0(2)))

It is a function of 7(7) and ~, with an implicit dependency of
n(7y) on 7.

As finding the optimal posterior is generally difficult, we
exploit the homotopy from the previous section. Starting at the
known minimum for v = 0, i.e., fo(z,7 = 0) = f,(z) and
fe(z,y = 0) = fo(z,y = 0), the minimum is tracked along
the artificial time ~y.

a7)

B. Derivation of Iterative ODE

The necessary condition for a minimum is obtained by
calculating the gradient vector G(n(y),7), i.e., the partial
derivative of D(n(y),v) w.r.t. parameter vector 7(7), and
setting it to zero B

aD(n(y),
G(n(y),7) = 6()77((1)) el

As we are interested in the change of the parameter vector 7(7)
w.rt. 7, we take the partial derivative of G(n(7y),v) w.r.t. v

=0. (18)

0G(u(1),7) on(y)  9GwM.) _ a9)
o™ (v) o Iy n
G, (n(7))
Ql(ﬂ(’Y)”Y) A
which is equivalent to
?D(u(),7) on()  &*D(u().7) _ 0)
on(y)on™(y) Oy ooy T
—
Dyy(n()yy) 20 Dy (n(7),7)

Using the abbreviations under the braces, we denote the
derivative of the gradient vector w.r.t. vy as

J(0(),7) = Doy (0(1).7) = G, (n().7) @D
and the Hesse matrix as
H(n(7),7) = Dym(n(v),7) = G, (n(v),7) . (22)
We can now rewrite (20) and obtain the ODE
H(n(7),7) - 02(y) + L(n(),7) =0 . (23)

It is an implicit ODE, where we have to solve for 7(v). It can
be formally rewritten as an explicit ODE

i(y) = —H ' (n(7),7) - L), 7) <= R(n(7),7) - 24

Please note that we desist from explicitly inverting the Hessian
to convert the ODE into an explicit one, as numerical inversion
has a high computational complexity and undesirable numerical
properties. We rather solve for 7(+) in (23) and exploit the
symmetry of the Hessian. a

We call this a Hessian flow for the parameter vector n(7),
in analogy to a gradient flow. B

We also call this an iterative flow, as the reference posterior
fe (z,7) at time ~ is maintained as the product of the prior

particle set times the progressive likelihood f7,(z,7). As the
product of prior density times likelihood typically is not in
the same density class as the prior, the reference posterior
strays into the territory of impermissible densities and creeps
beyond the border of usefulness, for significant changes in ~.
To make this fact more visible, we can write the right-hand
side R(-,-) in (24) as an explicit function of the reference

posterior f.(z,7) (and its derivative w.r.t. ) as

1) = R, fola, ), folz, 7)) -

In order to avoid the reference posterior becoming useless,
we have to replace it with its approximation either from time to
time or continually. We will call the resulting ODE a recursive
flow.

(25)

C. Derivation of Recursive ODE

For deriving the recursive flow, we start with finite integration
intervals®. Imagine that we first integrate the ODE from
v = 0 to some small v, so that the posterior flows from
the prior to the best permissible approximation f(z,n(v«)) of
the (impermissible) true posterior f. (&, 74) o< fp@) fr(z, v«).
For DMD, the weights of the reference posterior have changed
and are now not equal anymore. To keep it from degenerating
further, we replace the original reference posterior f.(v.) by
its best approximation f(z,7(7.)) at time .. Form this time
on, we compare with this newly reset reference density, that
we then simply call reference posterior for the next steps. Of
course, we have to modify the likelihood function that we
use from ~, on as the new reference density already includes
the likelihood integrated up to that time point. This involves
calculating an effective likelihood f$(z,~) by dividing the
original likelihood f,(z,~y) by the likelihood fr(z,.) used

to far
eff _ fr(z,7) ) (26)

o (E’ 7) fL(£7 ’Y*)

We could now repeat this procedure for the next  interval
(and in fact, the filtering method could be implemented this
way). However, we want to avoid the reference density leaving
the space of permissible densities at all. This is achieved
by simply using infinitesimal integration intervals. This is
equivalent to replacing the reference posterior by its best
approximation for all v in the ODE. Now the ODE does
not include the reference density at all anymore

i(y) = R(n(), fi¥(z,v), 5 (2,7)) -

We call this a recursive flow.

27)

V. GENERALIZED CRAMER DISTANCE

Instead of the general distance measure assumed in the
previous section we now use the specific distance measure from
the appendix that compares two DMDs that with (i) different
numbers of components, (ii) at mutually distinct locations,
(iii) with non-equal weights. For the particle flow in this paper,
we use a specific configuration of the distance measure that
compares two particle sets having the same numbers of samples.

3This is different from directly taking discrete steps in vy as in [11] as we
integrate the ODE over the interval.



A. Adaptation of General Distance Measure to Particle Flow

Let us define the given posterior density at artificial time v €
[0,1] as fe(z,~). The tilde ~ denotes the true posterior, but also
the best approximation known at v when this is used as a stand-
in for the true posterior. When fe (z,~) represents a particle set,
the dependency on v stems from its y-dependent weights. This
dependency is caused by the parametrized likelihood fr,(z, ")
as defined in Sec. III used for weighting the samples in the
Bayesian update step. From (8), by plugging in fr(z,v), we
obtain

L
felz, @(y), X) =) () - 6z — &) (28)
i=1
with
S - - 1T
X - [Qlaan 7£L} (29)
and
- - . - T
() = [@1(7), B2 (7), - -, 0L (7)] (30)
We have constant Z; = Ty and normalized time-varying
weights
~ 1 ‘%ia
() = Zif“i ") 31
Fr(X,~)
with
L
V) =2 ful@ ) (32)
j=1

It is obvious, that for v > 0, the weights w;(y) become
non-equal.

As we desire to maintain equal weights, we define an
approximating posterior density

sz

with fixed and equal weights w; = 1/L and ~-dependent
locations z;(y). We collect the locations in a parameter vector

n(7y) with

Je(z,w,n(y (z — z;(7)) (33)

T
n(y) = [z1(7), 22(7) -y 2L ()] (34)
and the y-independent weights in a vector
T
w= [wi,ws,..., wg] (35)

We define the distance D between the true density f, (z,7)
and its approximation f.(z,w,n()) based on the distance
measure from the previous section as

D (fe (z,w

Again, we track the best approximation of the posterior that
maintains equal weights starting with the posterior density for

v =0, ie, fo(z,w,7(0) = fyla).

D(n(7),7) = @), ), fe(z,w,n(7))) - 36)

B. ODE for Iterative Particle Flow

During the particle flow, the densities fe and f. have the
same number of components, so we have M = L. In that case,
the gradient in (54) simplifies to

oD
G, =—
Uy 8§k
L
_4wk{ Zwi (z), — ;) log ([lz), — ;%)
i=1
i#k
’ (37)
- wz(wk—x)log(llxk—xll)}
1=1
L
+ Ky wy, Z(Uh x; —W; I;)
i=1
With
0 for z=0
1 =< - 38
plog(z) {z log (ng) elsewhere (38)
we can write
Gy =i Z{ (wi plog (z), — z;) — Wi plog (z), — Z;))

+ KQ(wi Z;, — W, i’z)}
(39
We now note that w; is a function of v, i.e., w; = w;(7),
while z; and w; are independent of ~, and n, only implicitly
depends on ~. The derivative of the gradient vector w.r.t. 7 is
denoted By

(40)

= [JT (), ST (), T )]

with elements
0G ()

oy
— ;) + Kot; () 532} .

= — wg Z {4wZ ) plog (
(41)

The normalized weights w; induced by the parametrized
likelihood fr,(z,~) are given in (31) and (32). The derivatives
of the normalized weights w.r.t. artificial time ~ are

1 f.L(ii”y) FL(Xa’y) - fL(ii"y) FL(Xv’Y)

Jp(v) =

B = 1 F2(X.0) @
for:=1,2,...,L with
-~ L .
FL(X,7) =Y fu(@) (43)

C. ODE for Recursive Particle Flow

In analogy to the procedure in Subsec. IV-C, we now
derive a recursive version of the particle flow. This leads to



simplifications of the derivative of the gradient vector w.r.t. =y
from (40). Its elements are now given by

L
L) =Y {4@(7) plog (z; — ;) + Kain(7) x} .

(44)
The derivatives of the normalized weights w.r.t. artificial
time vy are simplified to

w.(v)zl{fi(xm) RS fﬂw)}
' L\ fu(zy) L fulapy) )
fort=1,2,..., L.

The Hesse matrix is now also simplified. The diagonal block
matrices are given by

(45)

Hyy = Ko wj Iy (46)
for k =1,...,L and the off-diagonal block matrices are still
given by
Hy = Ko w, wi Iy

(@ —2) (2 — )"
— 4w wik Iy log (||lz, — z )42
{ (H g 2 ) (x, — )" (), — )

fork=1,...,L,1=1,...,L, 1%k

VI. CONCLUSIONS

The proposed Newton-flow particle filter (NFPF) is a
systematic approach to recursively estimate the hidden state
of a nonlinear dynamic system. No heuristics are involved.
The NFPF is easy to understand and simple to use as almost
no tuning factors are required. It is fast for several reasons:
(i) The number of particles to be processed is much smaller
than in a standard particle filter. (ii) The distance measure,
its gradient, and the Hesse matrix can be calculated in closed
form. (iii) No optimization is required, just the solution of an
ODE over a finite time interval. The proposed estimator shows
a high performance compared to state-of-the-art approaches,
produces high-quality estimates, is robust, is degeneration-free
by design, and works in high dimensions. The proposed plugin
replacement for a particle filter step is fully differentiable.
This allows for end-to-end learning of the measurement
nonlinearities or the noise densities, which will be exploited
in future work.

APPENDIX

For convenience, we summarize the set distance measure
derived in [7] and list all the required formulas in the slightly
different notation used in this paper.

A. Distance Measure

We are given two DMDs that we want to compare. Usually,
this comparison is used for the approximation of one DMD
by the other. The reference DMD is called f(z). It comprises

M components with weights w;,ws, ..., wys and locations
47)

~ ~ ~ - T N
&= [Ty, Zg - 2n,] €R

for j =1,..., M. The approximating DMD has L components
with weights w1, ws, ..., wr, and locations
T N
x; = 214,24, .., 2n] €R (43)
fort=1,..., L.

The numbers of components L and M can be different.
In reduction problems, the number of components of the
approximating density is usually less than or equal to the
number of components M of the reference density. In some
cases, we even have L < M. For the application of the
distance in this paper, the numbers of components are equal,
ie., M = L.

The Cramér-von Mises distance D is given by

D = D3z —2Dy; + Dyy + K1 D (49)
with
M M
Dsz =Y @y xlog (I, — &;13) . (50)
i=1 j=1
L M
Doz =YY widy xlog (|lz; — 5;113) . (D
i=1 j=1
L L
Dow =3 wiw; xlog (lz; —z,13) . (52

and xlog(z) = z-log(z). Dg can be viewed as a penalty term
(with weight c) that ensures equal means and is given by
L M ?
Dp=|Y wiz;— ) @;i (53)
i=1 j=1 )

K, is a large constant penalizing the squared difference
between the means of f.(z) and f.(z).

B. Gradient
oD
G, =—
Gy oz,

-

NERS

w; (), — z;) log (|2, — 2;3)

:4wk{

2
%

(54)
w; (), — ij) log (Hik - @”3)}
1

L M
i=1 j=1

K> = 2(K; —2) is a large constant penalizing the difference
between the means of f.(z) and f.(z).

<.
Il



C. Hesse Matrix

The Hesse matrix H of the distance measure D is composed
of blocks Hy, € RN for k = 1,...,L, 1 = 1,...,L
according to

H;; H;» His Hyr
H> Hj Hoys H,r

= . ) . . (55)
Hr, Hp, His H;r

We have to distinguish between diagonal and off-diagonal block
matrices. The diagonal block matrices are given by

o oG, 0°D
k= 8&{ - 8&,66@{
= Kg wi IN

S (2 — ) — ;)"
+4wk2w,{IN log‘(Hgkf@in)+2(;k s A }
= Lk EZ) £
o
M - T
T — 2 )z — Z;
4wkzwj{IN lOg(”Ek*@sz)Jr?(fk ;) (zy 7J~) }

(), — ;)T (2 — Z;)

j=1

for Kk =1,..., L. The off-diagonal block matrices are given
by
IGy, 0D
H = — =
"7 0al T om0u
= Kywpw Iy

T
4 Inv 1 a2 2@1«—11)(%—&1)
wkwl{ v (Hgk zl )+ (z, — )" (2, — )
fork=1,...,L, 1 =1,...,L, |l # k. The Hesse matrix is
symmetric.
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