
Sample-Efficient and Smooth Cross-Entropy Method
Model Predictive Control Using Deterministic Samples

Markus Walker, Daniel Frisch, and Uwe D. Hanebeck

Abstract— Cross-entropy method model predictive control
(CEM–MPC) is a powerful gradient-free technique for nonlinear
optimal control, but its performance is often limited by the re-
liance on random sampling. This conventional approach can lead
to inefficient exploration of the solution space and non-smooth
control inputs, requiring a large number of samples to achieve
satisfactory results. To address these limitations, we propose
deterministic sampling CEM (dsCEM), a novel framework that
replaces the random sampling step with deterministic samples
derived from localized cumulative distributions (LCDs). Our
approach introduces modular schemes to generate and adapt
these sample sets, incorporating temporal correlations to ensure
smooth control trajectories. This method can be used as a drop-
in replacement for the sampling step in existing CEM-based
controllers. Experimental evaluations on two nonlinear control
tasks demonstrate that dsCEM consistently outperforms state-
of-the-art iCEM in terms of cumulative cost and control input
smoothness, particularly in the critical low-sample regime.

Index Terms— Model predictive control, cross-entropy method,
deterministic sampling, localized cumulative distribution, sam-
pling efficiency.

I. INTRODUCTION

Optimal control plays a crucial role in achieving desired
performance in many applications, such as autonomous driv-
ing and robotics. One widely used method for solving these
types of problems is model predictive control (MPC), which
operates in a receding horizon fashion. At each time step,
MPC solves an optimization problem to determine the optimal
control inputs over a finite horizon. It then applies only
the first input to the system [1]. However, this optimization
can be challenging for nonlinear systems, non-differentiable
dynamics, and non-convex cost functions. In such cases,
gradient-free optimization methods are often preferred be-
cause they can navigate complex cost landscapes and avoid
local minima [2].

The cross-entropy method (CEM) [3] is a popular gradient-
free technique that has been successfully applied to various
optimal control problems [2], [4]. It iteratively refines a pro-
posal distribution over control inputs by sampling, evaluating
performance, and updating the distribution based on the best-
performing samples. CEM–MPC integrates this into the MPC
framework, using a discrete-time stochastic process (e.g.,
a Gaussian process, see Fig. 1) to generate control input
sequences. The parameters of this process are updated based

This work is part of the German Research Foundation (DFG) AI Research
Unit 5339 regarding the combination of physics-based simulation with AI-
based methodologies for the fast maturation of manufacturing processes.

Markus Walker, Daniel Frisch and Uwe D. Hanebeck are with the
Intelligent Sensor-Actuator-Systems Laboratory (ISAS), Institute for Anthro-
pomatics and Robotics, Karlsruhe Institute of Technology, Germany (e-mail:
{markus.walker, daniel.frisch, uwe.hanebeck}@kit.edu).

k k + 1 k + 2 . . . k +NH − 1

horizon step

co
n
tr

o
l

in
p
u
t

Gaussian process

random samples

deterministic samples

Fig. 1: Schematic showing control input sampling over a
finite horizon using either deterministic or random samples.
As can be seen, deterministic samples cover the stochastic
process without large gaps or clusters. For simplicity, time
correlations are neglected.

on the cost of each sampled trajectory, which focuses the
search on promising regions of the control space.

A key challenge in standard CEM–MPC is that control
inputs are sampled independently at each time step, which can
result in non-smooth control sequences and requires a large
number of samples to adequately explore the control space.
The improved CEM (iCEM) [2] introduces smoothness by
temporal correlations, allowing for more informed sampling
strategies that lead to better performance. However, reliance
on random sampling, even with temporal correlations, can
still produce non-smooth control trajectories. This is often
undesirable in practice because it can damage actuators and
cause erratic system behavior.

To overcome these challenges, we propose replacing ran-
dom sampling with a deterministic sampling strategy. Our ap-
proach, which we term deterministic sampling Cross-Entropy
Method (dsCEM), leverages precomputed optimal sample
sets based on localized cumulative distributions (LCDs) [5],
[6]. These deterministic samples are structured to cover the
solution space more efficiently and with fewer discrepancies
than random samples (see Fig. 1). Inspired by iCEM, we
incorporate temporal correlations into the sampling process
with the goal of generating control sequences that are both
more effective and significantly smoother. The proposed sam-
pling schemes are designed as modular drop-in replacements
for the sampling step in CEM-based controllers, making this
approach broadly applicable.

ar
X

iv
:2

51
0.

05
70

6v
1

 [
ee

ss
.S

Y
]

 7
 O

ct
 2

02
5

https://arxiv.org/abs/2510.05706v1

A. Contribution And Outline

We first state the optimal control problem and summarize
the CEM–MPC approach in Secs. II and III. Then, in Sec. IV,
we introduce the concept of deterministic samples based on
LCDs and describe how to integrate them into the CEM–
MPC framework. Finally, we evaluate the proposed approach
on two benchmark tasks, (i) the mountain car and (ii) the
cart-pole swing-up task, in Sec. V, and compare it against
the widely used iCEM method [2].

B. Notation

In this paper, underlined letters, e.g.,
¯
x, denote vectors,

boldface letters, such as
¯
x, represent random variables, while

boldface capital letters, such as A, indicate matrices. Sets are
denoted by calligraphic letters, e.g., E . The mean of a random
variable is denoted by ·̂, e.g., ˆ

¯
x, and covariance matrices are

denoted by C. Diagonal matrices are represented by diag(·).
The indicator function is denoted by 1, e.g., 1A is 1 if event
A is true and 0 otherwise.

II. OPTIMAL CONTROL PROBLEM

We consider discrete-time, finite-horizon deterministic op-
timal control problems (OCPs) with cumulative cost

Jk = gNH
(
¯
xk+NH

) +

k+NH−1∑
n=k

gn(
¯
xn, ¯

un) , (1)

where k is the current time step, NH the prediction horizon,

¯
xk ∈ Rdx the system state,

¯
un ∈ Rdu the control input,

gn(
¯
xn, ¯

un) : R
dx ×Rdu → R the stage cost at time step n,

and gNH(xk+NH) : R
dx → R the terminal cost. The discrete-

time system dynamics are given by

¯
xn+1 =

¯
an(¯

xn, ¯
un) for n = k, . . . , k +NH − 1 , (2)

with initial state
¯
xk at time step k and system function

¯
an(¯

xn, ¯
un) : R

dx×Rdu → Rdx . The OCP is to find the opti-
mal control input sequence

¯
u∗
k, . . . , ¯

u∗
k+NH−1 that minimizes

the cumulative cost Jk while satisfying system dynamics and
additional constraints on states and controls. The OCP can
be solved in a receding horizon fashion using MPC, where
at each time step k, the first control input

¯
u∗
k of the optimal

sequence is applied to the system, and the process is repeated
at the next time step.

Typically, the OCP is solved using gradient-based ap-
proaches such as direct single- or multiple-shooting meth-
ods [7], differential dynamic programming [8], iterative linear
quadratic regulator [9], or gradient-free methods such as
model predictive path integrals [10], or the CEM [2], [4]. In
this work, we focus on CEM–MPC, which is described in
more detail below.

III. CROSS-ENTROPY METHOD MPC

Before introducing the CEM–MPC, we will briefly explain
the concept of the CEM as an optimizer, based on [3], [11].
Note that, to prevent confusion with the control input

¯
u and

state
¯
x, we denote the dξ-dimensional optimization variable

for the CEM as
¯
ξ ∈ Rdξ .

A. Cross-Entropy Method

The CEM aims to find a density
¯
ξ ∼ f(

¯
ξ;
¯
θ), parameterized

by
¯
θ, whose samples

¯
ξ(i) tend to achieve small costs J(

¯
ξ(i)).

By setting a performance threshold γ and defining the event
Aγ = {

¯
ξ | J(

¯
ξ) ≤ γ}, i.e., the event of achieving low-cost

solutions, the corresponding rare-event probability can be
expressed as [3]

l = Pf(
¯
ξ;
¯
θ)

(
J(
¯
ξ) ≤ γ

)
= Ef(

¯
ξ;
¯
θ)

{
1J(

¯
ξ)≤γ

}
, (3)

where 1J(
¯
ξ)≤γ is the indicator function. By multiplying

f̃(
¯
ξ)/f̃(

¯
ξ) within the expectation (3), rearranging yields

l = Ef(
¯
ξ;
¯
θ)

{
1J(

¯
ξ)≤γ

f̃(
¯
ξ)

f̃(
¯
ξ)

}
= Ef̃(

¯
ξ)

{
1J(

¯
ξ)≤γ

f(
¯
ξ;
¯
θ)

f̃(
¯
ξ)

}
,

where f̃(
¯
ξ) is an importance sampling probability density

function (PDF). Note that the expectation is now w.r.t. the
importance PDF f̃(

¯
ξ). According to importance sampling the-

ory, the optimal choice of f̃∗(
¯
ξ) that minimizes the variance

of the estimator is [3]

f̃∗(
¯
ξ) =

1J(
¯
ξ)≤γ f(

¯
ξ;
¯
θ)

l
.

However, this is infeasible because it depends on l, which is
the quantity we want to estimate using f̃(

¯
ξ), and is therefore

a-priori unknown.
To overcome this infeasibility, the central idea of CEM

is to iteratively approximate the optimal PDF f̃∗(
¯
ξ). At

each iteration j, we start with a known proposal distribution
f̃(
¯
ξ;
¯
θj) and aim to find a better set of parameters

¯
θj+1 for

the next iteration. This is achieved by finding the parameters

¯
θj+1 that minimize the Kullback–Leibler (KL) divergence
between the optimal PDF derived from the current step,

f̃∗
j (
¯
ξ) =

1J(
¯
ξ)≤γj

f̃(
¯
ξ;
¯
θj)

lj
,

and the next proposal distribution f̃(
¯
ξ;
¯
θj+1). Formally, the

next parameters are given by

¯
θj+1 = argmin

¯
θ′

DKL

(
f̃∗
j (
¯
ξ)∥f̃(

¯
ξ;
¯
θ′)
)

= argmin

¯
θ′

H
(
f̃∗
j (
¯
ξ), f̃(

¯
ξ;
¯
θ′)
)
−H

(
f̃∗
j (
¯
ξ)
)

where H(·, ·) is the cross-entropy between both distributions,
and H(f̃∗

j (
¯
ξ)) is the entropy of f̃∗

j (
¯
ξ). Since entropy H(·)

does not depend on
¯
θ′, minimizing the KL divergence is

equivalent to minimizing the cross-entropy

¯
θj+1 = argmin

¯
θ′

−
∫
R

dξ

f̃∗
j (
¯
ξ) log f̃(

¯
ξ;
¯
θ′) d

¯
ξ

= argmin

¯
θ′

−
∫
R

dξ

1J(
¯
ξ)≤γj

f̃(
¯
ξ;
¯
θj)

lj
log f̃(

¯
ξ;
¯
θ′) d

¯
ξ ,

Algorithm 1: Cross-Entropy Method
Input : Initial parameters

¯
θ0, elite set size Ne, number

of samples NCEM, number of iterations jmax

1 for j ← 0 to jmax − 1 do
2 Sample {

¯
ξ(i)}NCEM

i=1 ∼ f̃(
¯
ξ;
¯
θj)

3 Evaluate costs {J(
¯
ξ(i))}NCEM

i=1

4 Select elite set Ej of the Ne best samples
5 Update parameters

¯
θj+1 using Ej

6 return best
¯
ξ(i) from final elite set Ejmax

where the unknown constant lj can be dropped, as it does
not depend on

¯
θ′. By rewriting the integral as an expectation

with respect to the known current PDF f̃(
¯
ξ;
¯
θj), we get

¯
θj+1 = argmin

¯
θ′

−Ef̃(
¯
ξ;
¯
θ
j
)

[
1J(

¯
ξ)≤γj

log f̃(
¯
ξ;
¯
θ′)
]
.

This expectation can be approximated by samples {
¯
ξ(i)}Ni=1

from f̃(
¯
ξ;
¯
θj). This yields the objective for the next set of

parameters

ˆ
¯
θj+1 = argmin

¯
θ′

− 1

N

N∑
i=1

1J(
¯
ξ(i))≤γj

log f̃(
¯
ξ;
¯
θ′) .

Therefore, the new parameters
¯
θ′ are fitted to the subset of

best samples Ej = {
¯
ξ(i) | J(

¯
ξ(i)) ≤ γj}, i.e., the elite set.

For common choices of f̃ , the minimization has sim-
ple closed-form solutions, e.g., for a Gaussian f̃(

¯
ξ;
¯
θ) =

N (
¯
ξ; ˆ
¯
ξ,C), where the solution is the maximum likelihood

estimate on the elite set

ˆ
¯
ξ
j+1

=
1

|Ej |
∑

¯
ξ(i)∈Ej

¯
ξ(i) ,

Cj+1 =
1

|Ej |
∑

¯
ξ(i)∈Ej

(
¯
ξ(i) − ˆ

¯
ξ
j+1

)(
¯
ξ(i) − ˆ

¯
ξ
j+1

)⊤ , (4)

with ˆ
¯
ξ
j+1

and Cj+1 being the mean and covariance matrix
of the Gaussian proposal summerized in parameter vector

¯
θj+1 = (ˆ

¯
ξ
j+1

,Cj+1) and the elite set size |Ej |.
In each iteration, γj is reduced to focus on better-

performing samples (i.e., more rare events). In practice, γj
is usually not specified directly but rather, the Ne-th best
cost among the samples is used, e.g., the best 10 samples
out of 100. After the last iteration jmax, the best sample
from the final elite set Ejmax

is returned as the solution. Note
that in some variants, the mean ˆ

¯
ξ
jmax

of the final proposal
distribution is returned instead.

In summary, the CEM is an iterative method that refines the
proposal distribution over the solution space, concentrating on
regions with lower costs, and effectively guiding the search
toward optimal or near-optimal solutions. The complete CEM
procedure is shown in Alg. 1.

Algorithm 2: Cross-Entropy Method MPC Step

Input : State
¯
xk, initial parameters

¯
θ0 = (ˆ

¯
ξ
0
,C0)

1 for j ← 0 to jmax − 1 do
2 Sample

¯
u
(1)
k:k+NH−1, . . . , ¯

u
(NCEM)
k:k+NH−1 ∼ f̃(·;

¯
θj)

3 Trajectory shooting using (2) // parallel

4 Evaluate costs {Jk(
¯
u
(i)
k:k+NH−1)}

NCEM
i=1

using (1) // parallel

5 Select elite set Ej of the Ne best samples
6 Update parameters

¯
θj+1 using Ej

7 return first control
¯
u∗
k from the best sequence in Ejmax

B. Application to MPC

To apply the CEM to the OCP from Sec. II, the entire
control sequence over the prediction horizon

¯
uk:k+NH−1 =

¯
uk, . . . ,¯

uk+NH−1, is treated (in flattened form) as the random
vector to be optimized at each time step k. I.e., the optimiza-
tion variable is the random vector

¯
ξ = [

¯
u⊤
k , . . . ,¯

u⊤
k+NH−1]

⊤,
whose sample space is Rdu·NH , and the goal is to find a
realization that minimizes the cost function Jk (1).

The sequence of control inputs can be viewed as a discrete-
time stochastic process. A natural choice for the proposal dis-
tribution f̃(·) is therefore a multivariate Gaussian distribution
over the flattened control sequence f̃(

¯
ξ;
¯
θj) = N (

¯
ξ; ˆ
¯
ξ
j
,Cj),

where the parameters
¯
θj = (ˆ

¯
ξ
j
,Cj) consist of the mean

control sequence ˆ
¯
ξ
j

= [ˆ
¯
u⊤
k , . . . , ˆ¯

u⊤
k+NH−1]

⊤ and the co-
variance matrix Cj ∈ R(du·NH)×(du·NH). This formulation
is powerful because the covariance matrix Cj can model
temporal correlations between control inputs at different time
steps, effectively treating the control sequence as a Gaussian
Process. As with standard CEM, the parameters are iteratively
updated based on the elite set of best-performing control
sequences. Notably, trajectory shooting and cost evaluation
can be efficiently parallelized across all sampled control
sequences on modern hardware. The overall procedure for a
single CEM–MPC step is summarized in Alg. 2.

C. Practical Improvements and Related Work

A major challenge in this basic approach is the high
dimensionality of the optimization problem. While adapting a
full covariance matrix can capture correlations, it is prone to
estimation errors unless a large number of samples is used. To
address this, a common simplification is to assume a diagonal
covariance matrix Cj , e.g., as done in [12], which reduces
the number of parameters to be estimated and simplifies the
sampling process, i.e., Cj = diag(σ2

j,1, . . . , σ
2
j,du·NH

), where
σ2
j,i is the variance of the i-th control input in the flattened

sequence. However, this assumption ignores temporal corre-
lations between control inputs at different time steps, which
can be crucial for generating smooth control sequences.

A standard technique to improve convergence smoothness is
to introduce a momentum term in the parameter updates [11],
which smooths the updates across iterations. The momentum
update is given by ˆ

¯
ξ
j+1

= αˆ
¯
ξ
j
+ (1 − α)ˆ

¯
ξ
j,e

, where ˆ
¯
ξ
j

is

the mean from the previous iteration, ˆ
¯
ξ
j,e

is the mean of
the current elite set, and α ∈ [0, 1) is a momentum factor.
Analogously, the momentum can also be applied to the
covariance matrix update [11].

A further standard improvement, used in various MPC
approaches [1], is to warm-start the optimization at each time
step by shifting the mean control sequence from the previous
time step. This is achieved by setting the initial mean to
ˆ
¯
ξ
0
= [

¯
u⊤
k−1,1, . . . , ¯

u⊤
k−1,NH−1, ¯

u⊤
init]

⊤, where
¯
uk−1,i is the i-

th control input from the optimized sequence at the previous
time step and

¯
uinit is an initial guess for the last control

input, often set to zero or the last optimized input.
A notable improvement is the iCEM algorithm [2], which

introduces temporal correlations in a structured way. Instead
of adopting a full covariance matrix, iCEM samples control
actions from colored noise, imposing a smoothness prior
on the control sequences. This is achieved by generating
samples from a stationary distribution whose power spectral
density follows a power law, PSD(f) ∝ 1/fβ, where f is
frequency and β controls the noise color. To further increase
sample efficiency, iCEM retains a fraction of the elite set
from the previous MPC time step, shifting the sequences
in time and adding them to the current sample pool. Other
improvements in iCEM include clipping control samples to
ensure feasibility and decaying the number of samples over
iterations via NCEM,j = max(NCEM/ηj, 2Ne), where η ≥ 1
is a decay factor. This reduces computational cost as the
optimizer converges. An overview of the iCEM algorithm is
provided in [2, Alg. 1].

Besides the improvements mentioned above, further en-
hancements focus on learning the sampling distribution itself,
for instance, by using Gaussian processes [13] or normalizing
flows [14].

However, in this work, we focus on the sample generation
process itself by introducing deterministic sampling to CEM–
MPC. This approach is orthogonal to the learning-based
improvements and can be combined with them.

IV. CROSS-ENTROPY METHOD MPC USING
DETERMINISTIC SAMPLES

As an alternative to random sampling, we propose to use
deterministic samples based on the LCD. In this section, we
briefly summarize how to obtain such optimal samples and
then describe how to integrate them into CEM–MPC.

A. Deterministic Samples Using Localized Cumulative Dis-
tributions

The LCD is a multivariate generalization [5] of the uni-
variate cumulative density function. It is defined as

F (
¯
m, b) =

∫
R

dξ

f(
¯
ξ)K(

¯
ξ,

¯
m, b) d

¯
ξ ,

where f(
¯
ξ) is a PDF over Rdξ , and K(·,

¯
m, b) is a kernel

function centered at
¯
m ∈ Rdξ with bandwidth b ∈ R>0. The

kernel function is typically chosen as a Gaussian kernel [5]

K(
¯
ξ,

¯
m, b) = exp

(
−
∥
¯
ξ −

¯
m∥22

2b2

)
.

ξ1

ξ 2

(a) Standard normal samples
ξ1

ξ 2

(b) Transformed samples
Fig. 2: Example of 25 two-dimensional deterministic samples,
where the background color indicates the PDF.

We then obtain a general distance measure between two
PDFs by comparing their respective LCDs with a modified
Cramér–von Mises (CvM) distance [5]

DCvM =

∫ ∞

0

w(b)

∫
R

dξ

(
F̃ (

¯
m, b)− F (

¯
m, b)

)2
d
¯
m db ,

where F̃ (
¯
m, b) and F (

¯
m, b) are the LCDs of f̃(

¯
ξ) and f(

¯
ξ),

respectively, and w(b) is a weighting function, typically
w(b) = b1−dξ . Here we use this distance to compare a Gaus-
sian PDF f̃(

¯
ξ) with a Dirac mixture f(

¯
ξ) = 1

N

∑N
i=1 δ(

¯
ξ −

¯
ξ(i)). By minimizing DCvM w.r.t. the sample locations

¯
ξ(i)

we obtain an optimal Dirac mixture approximation of the
Gaussian f̃(

¯
ξ) [6]. An example of such optimal samples in

two dimensions is shown in Fig. 2.

B. Integration of Deterministic Samples into CEM–MPC

The core idea is to use deterministic samples rather than
random ones in the CEM. To speed up, we use pre-computed
deterministic samples since online computation is prohibitive.
Optimal samples {˜

¯
ξ(i)} are generated offline for the isotropic

standard Gaussian N (
¯
ξ;
¯
0, I) [15]–[17]. These samples are

then transformed at runtime (Alg. 2, line 2) to match the cur-
rent proposal distribution N (

¯
ξ; ˆ
¯
ξ
j
,Cj) of the CEM optimizer

via [17]

¯
ξ(i) = ˆ

¯
ξ
j
+ Lj

˜
¯
ξ(i) , (5)

where Lj is the matrix square root of the Gaussian process
covariance matrix, i.e., Cj = LjL

⊤
j . While this transforma-

tion does not preserve the samples’ optimality in the CvM
sense [16] for a non-isotropic target distribution, it provides
a practical and efficient way to generate structured samples
with low discrepancy.

A naive implementation would use the same transformed
set of deterministic samples in every iteration of the optimizer.
However, we found this limits exploration and can lead
to premature convergence, especially with a small number
of samples. To address this, we propose three schemes for
generating varied sample sets across iterations.

a) Sample Set Variability Schemes: To enhance explo-
ration, we introduce variability into the sampling process
either across iterations or across time steps.

(V1) Random Rotation: In each iteration j of the CEM,
the pre-computed isotropic standard Gaussian samples {˜

¯
ξ(i)}

are rotated by a random rotation matrix Rj before the transfor-
mation. The matrix is drawn from the special orthogonal group
SO(dξ), which consists of all dξ × dξ orthogonal matrices
with a determinant of +1 [18]. Therefore the transformation
in (5) changes to

¯
ξ(i) = ˆ

¯
ξ
j
+LjRj

˜
¯
ξ(i). Note that rotating the

samples of an isotropic distribution results in another valid
sample set without losing their optimality in the CvM sense.
This introduces stochasticity, improving exploration at the
cost of losing the fully deterministic nature of the algorithm.

(V2) Deterministic Joint Density Sampling: To maintain
a fully deterministic algorithm, we pre-compute optimal
deterministic samples from a higher-dimensional random
vector that encompasses all CEM iterations, i.e., we generate
deterministic samples in dimension dξ · jmax. Each high-
dimensional sample [˜

¯
ξ(i)⊤
1

, . . . , ˜
¯
ξ(i)⊤
jmax

]⊤ is then partitioned
into jmax separate samples of dimension dξ, providing a
unique, deterministic sample set for each iteration, which are
then transformed using (5).

(V3) Combined Approach: This hybrid scheme balances
determinism within the optimization loop with stochastic
exploration across time steps. A single set of high-dimensional
samples is pre-computed as in (V2). At the beginning of each
MPC time step k, this set is rotated by a single random matrix
Rk ∈ SO(dξ). The resulting samples are then partitioned
and used deterministically for all subsequent CEM iterations
within that time step.

b) Covariance Matrix Structures and Adaptation: Given
the sample set by one of the above schemes, the samples are
transformed to match the current proposal distribution of the
CEM optimizer using (5). The use of deterministic samples
is compatible with, e.g., maintaining a diagonal covariance
matrix, or by adapting a full covariance matrix. We focus on
two approaches that incorporate temporal correlations, which
are known to be beneficial for generating smooth control
sequences [2]. The initial correlation structure is derived
from the power spectral density of colored noise (e.g., pink
noise, β = 1) via the Wiener–Khinchin theorem resulting in
a Toeplitz structured correlation matrix [19, pp. 576–578].

(M1) Fixed Correlation with Adaptive Variance: In this
approach, the correlation structure of the proposal distribution
is fixed throughout the optimization. The covariance matrix
is constructed as Cj = diag(

¯
σj)Cρ diag(

¯
σj), where Cρ

is the fixed time-correlation matrix and
¯
σj is the vector

of marginal standard deviations. In each iteration, only the
marginal variances are updated based on the elite set, which
simplifies (4) to

¯
σ2
j+1 =

1

|Ej |
∑

¯
ξ(i)∈Ej

(
¯
ξ(i) − ˆ

¯
ξ
j+1

)2 .

This reduces the number of parameters to be estimated
and is less demanding on the number of elite samples; a
minimum of two non-identical elite samples is sufficient. The
transformation in (5) then uses Lj = diag(

¯
σj)Aρ, where Aρ

is the matrix square root of Cρ.
(M2) Adaptive Full Covariance: This strategy allows

for greater flexibility by adapting the full covariance matrix

TABLE I: Task-specific parameters for evaluation.
Parameter Mountain Car Cart-Pole Swing-Up

Control input limits u ∈ [−1, 1] u ∈ [−10, 10]N
Goal state

¯
xg (˜

¯
xg) [π/2, 0]⊤ [0, 0, 1, 0, 0]⊤

State weights Q diag([1, 1]) diag([0.1, 0.1, 1, 0.1, 0.1])
Control weight r 0.1 10−4

Terminal weights QNH
diag([1, 1]) diag([10, 0.1, 10, 0.1, 0.1])

Process noise C¯
w diag([0, 10−7]) diag([0, 10−8, 0, 10−8])

Time discretization ∆t 3 s 0.02 s
Total time steps T 150 300
Noise color for CEM β 0.25 1.0

Initial ˆ
¯
ξ
0

for CEM
¯
0

¯
0

Initial
¯
σ0 for CEM 1.5 ·

¯
1 10 ·

¯
1

Cj in each iteration. The optimization is initialized with a
structured covariance matrix based on colored noise as in the
previous scheme. Subsequently, the entire matrix is updated
using the maximum likelihood estimate from the elite set.
This allows the optimizer to adapt the temporal correlations
online. However, estimating a full dξ × dξ covariance matrix
requires the elite set to contain at least dξ + 1 non-collinear
samples [20].

The sample set variation schemes (V1–V3) and covariance
adaptation methods (M1–M2) can be combined arbitrarily.
For instance, random rotations (V1) can be used with either a
fixed correlation structure with adaptive variances (M1) or a
full adaptive covariance matrix (M2). This modularity allows
the proposed deterministic sampling strategies to serve as
drop-in replacements for the random sampling step in various
CEM–MPC algorithms.

V. EXPERIMENTS

To evaluate the proposed CEM–MPC with deterministic
samples, we conduct experiments on two tasks: (i) the moun-
tain car [21] and (ii) the cart-pole swing-up task [22].

In contrast to standard simulation environments, such as
Gymnasium [21], where the system dynamics are deter-
ministic, we add additive Gaussian process noise when the
optimized control inputs are applied to the system during
simulation. The simulated dynamics are then given by

¯
xk+1 =

¯
a(
¯
xk, uk) +

¯
wk ,

where
¯
wk is sampled from a zero-mean Gaussian PDF

N (
¯
w;

¯
0,C¯

w) with process noise covariance C¯
w. However,

the controller does not have access to the process noise
or its PDF and assumes deterministic dynamics

¯
a(·, ·) for

prediction, and therefore has to deal with random disturbances.
For both tasks, quadratic stage cost functions of the form
gn(

¯
xn, un) = (

¯
xn − ¯

xg)
⊤Q(

¯
xn − ¯

xg) + r · u2
n are used,

where
¯
xg is the goal state, and Q and r are state and control

weights, respectively. The terminal cost function is set to
gNH

(
¯
xk+NH

) = (
¯
xk+NH

−
¯
xg)

⊤QNH
(
¯
xk+NH

−
¯
xg). The

task-specific parameters are summarized in Tab. I.
For the evaluation, we denote the use of our deterministic

sampling strategies as deterministic sampling CEM (dsCEM).
Specifically, we refer to the adaptation methods from Sec. IV-
B as dsCEM-Var (M1) and dsCEM-Cov (M2), and for the
variability schemes we add V1, V2, and V3, when the specific

scheme is used. dsCEM-Var is evaluated with all three vari-
ability schemes, while dsCEM-Cov is only evaluated with
scheme V3, to keep visualizations clear.

We compare our approach against the iCEM method [2],
where the only difference is that we swapped the random sam-
pling step with our proposed deterministic sampling strategies.
For a fair comparison, both methods share hyperparameters
as used in [2]: a horizon NH = 30, jmax = 3 iterations,
momentum α = 0.1, and shift-initialization warm-starting.
The elite set size is Ne = 10 (or Ne = 40 for dsCEM-Cov),
and a fraction of the top 0.3 of the elite set is carried over to
the next time step (rounded down). The initial correlation for
dsCEM is derived from the noise color β used in iCEM as
described in Sec. IV-B. To isolate the impact of the sampling
strategy, iCEM’s sample decay is disabled, ensuring an equal
number of shooted trajectories for both methods.

We evaluate all methods over a sample size NCEM ranging
from 20 to 300. Each configuration is repeated for 100 runs
with different random seeds. The range for dsCEM-Cov starts
at 40 samples due to its higher elite sample requirement.
Additionally, we establish a performance baseline by running
iCEM with an extensive sample size of 104.

We evaluate controller performance using cumulative cost
and control input smoothness. The cumulative cost is the
sum of stage costs gk(

¯
xk, ¯

uk) over the entire simulation. The
smoothness is measured using [14]

S =

T−1∑
k=1

∥
¯
uk − ¯

uk−1∥2 ,

where a lower value of S indicates a smoother trajectory by
penalizing large changes between consecutive control inputs.

A. Mountain Car Task

The dynamics of the mountain car task [21] are given by[
ẋ1

ẋ2

]
=

[
x2

−0.0025 cos(3x1)

]
+

[
0

0.0015

]
u ,

where x1 is the position and x2 is the velocity. The system
is discretized using Runge–Kutta 4th order (RK4) integration.
The main challenge is that the underpowered car cannot drive
directly up the hill and must perform a swing-up maneuver.
Unlike the standard task, our objective is to reach the goal
state at the top of the hill and stop, which is more difficult
than reaching the top position with an arbitrary final velocity.
The state is initialized with position x1 drawn uniformly from
[−0.7,−0.3], and with zero initial velocity.

The results for the mountain car task are presented in Fig. 3.
In terms of cumulative cost (Fig. 3a), all proposed dsCEM
methods outperform iCEM, particularly at small sample sizes.
While the performance of all methods converges for larger
sample sizes, they do not reach the baseline established by
iCEM with 104 samples. Regarding smoothness (Fig. 3b),
all dsCEM variants, except for dsCEM-Cov V3, produce
smoother control trajectories than iCEM. Notably, dsCEM-
Var V2 consistently achieves the highest degree of smoothness
(lowest values) across most sample sizes. An interesting trend
is visible in the smoothness measure, where the score for

50 100 150 200 250 300

sampled trajectories

22.5

25.0

27.5

30.0

32.5

35.0

cu
m

u
la

ti
v
e

co
st

(a) Cumulative costs

50 100 150 200 250 300

sampled trajectories

5

6

7

8

co
n
tr

o
l

in
p
u
t

sm
o
o
th

n
es

s
(b) Action smoothness

0 20 40 60 80 100 120 140

time step

0.0

0.5

1.0

1.5

st
a
g
e

co
st

iCEM

dsCEM Var V1

dsCEM Var V2

dsCEM Var V3

dsCEM Cov V3

iCEM, 104 trajectories

(c) Convergence (50 control sequence samples)

Fig. 3: The results for the Mountain Car Task are given for
(a) cumulative cost and (b) control input smoothness over
sample size, as well as for (c) convergence behavior for a
fixed sample size of 50. All plots show the median (line) and
the interquartile range (shaded area) across 100 runs. The
different methods’ colors are consistent across all plots.

all methods initially increases, peaking around a sample size
of 50, before decreasing again. This peak likely indicates
the sample budget required to discover aggressive swing-
up maneuvers that are effective for reducing costs. With
fewer samples, the optimizer settles for smoother but less
optimal trajectories, while larger budgets allow it to find
and subsequently refine these more dynamic strategies. The
convergence behavior for a sample size of 50 is depicted
in Fig. 3c. While the median stage cost evolves similarly
for all methods, our proposed dsCEM variants demonstrate
slightly faster convergence, particularly around time step 30,

and their performance closely approaches the extensive iCEM
baseline. As the costs approach zero, the differences between
the methods become less significant because all controllers
primarily focus on counteracting disturbances.

B. Cart-Pole Swing-Up Task

The dynamics of the friction-less cart-pole swing-up task
are given by [22]

ϕ̈ =
g sin(ϕ)− cos(ϕ) · u+mplϕ̇

2 sin(ϕ)
mp+mc

l
(

4
3 −

mp cos2(ϕ)
mp+mc

) ,

ẍ =
u+mpl

(
ϕ̇2 sin(ϕ)− ϕ̈ cos(ϕ)

)
mp +mc

,

where the state is
¯
x = [x, ẋ, ϕ, ϕ̇]⊤, with cart position x,

pole angle ϕ (where ϕ = 0 is the upright position), and their
respective (angular) velocities. The physical parameters are
cart mass mc = 1kg, pole mass mp = 0.1 kg, pole length l =
0.5m, and gravity g = 9.81m s−2. The system is discretized
using RK4. The initial state is set to zero for the cart’s position
and both velocities, while the pole’s angle ϕ is uniformly
sampled from [145◦, 215◦]. The costs are evaluated using an
augmented state vector ˜

¯
x = [x1, x2, cos(x3), sin(x3), x4] to

account for the periodicity of the angle x3.
In terms of cumulative cost (Fig. 4a), most proposed

dsCEM methods outperform iCEM and closely approach the
performance of the extensive iCEM baseline. However, the
submethod based on the full covariance (dsCEM Cov V3)
struggled to match the performance of our variance-based
methods (dsCEM Var V1–V3). This suggests that using a
high-dimensional covariance matrix may not be suitable for
this task with small sample sizes. Regarding control input
smoothness (Fig. 4b), all dsCEM methods demonstrate supe-
rior performance over iCEM, with dsCEM-Var V2 being the
smoothest across all sample sizes. Notably, with more than 50
samples, dsCEM-Var V2 even surpasses the smoothness of the
extensive iCEM baseline. This is further illustrated in Fig. 4d,
which shows that the control input trajectories of dsCEM-Var
V2 are significantly less noisy than that of iCEM with the
same sample budget, and even smoother than the extensive
baseline. The convergence plot for a sample size of 50
(Fig. 4c) confirms that most dsCEM variants converge faster
than iCEM. However, the wide interquartile range for dsCEM-
Var V3 suggests that this specific variant is less robust.

C. Discussion

The experimental results demonstrate that replacing stan-
dard random sampling in CEM with our proposed determin-
istic sampling strategies, termed dsCEM, leads to significant
improvements in performance and sample efficiency. Across
both the mountain car and cart-pole swing-up tasks, the
dsCEM variants consistently outperform the baseline iCEM
method, particularly when the number of samples is limited.

A key finding is the superior control input smoothness
achieved by the dsCEM methods. This is especially pro-
nounced for the fully deterministic variant dsCEM-Var V2,

50 100 150 200 250 300

sampled trajectories

300

400

500

600

700

800

cu
m

u
la

ti
v
e

co
st

(a) Cumulative costs

50 100 150 200 250 300

sampled trajectories

50

75

100

125

150

co
n
tr

o
l

in
p
u
t

sm
o
o
th

n
es

s

(b) Action smoothness

0 50 100 150 200 250 300

time step

0

2

4

6

8

st
a
g
e

co
st

iCEM

dsCEM Var V1

dsCEM Var V2

dsCEM Var V3

dsCEM Cov V3

iCEM, 104 trajectories

(c) Convergence (50 control input samples)

0 50 100 150 200 250 300

time step

−20

−10

0

10

20

co
n
tr

o
l

in
p
u
t

(d) Applied control inputs for all 100 runs, with each method
distinguished by color. The optimization for each run was performed
using 300 samples.

Fig. 4: Results for the cart-pole task. The different methods’
colors are consistent across all plots.

which consistently yields the smoothest control trajectories.
This outcome is expected, as deterministic sample sets provide
low-discrepancy coverage of the sampling space, mitigating
the clustering and gaps inherent to random sampling. Notably,
in the cart-pole swing-up task, dsCEM produces smoother
control inputs than even the extensive iCEM baseline, despite
using a fraction of the samples. This highlights the ability of
deterministic sampling to find high-quality, smooth solutions
with remarkable efficiency.

In terms of cumulative cost, dsCEM shows a clear ad-
vantage at lower sample sizes, indicating faster convergence
to effective control strategies. Although all methods tend to
converge as sample sizes increase, the gains from dsCEM in
the low-sample regime are critical for practical applications.

The enhanced sample efficiency of dsCEM has profound
implications for the deployment of MPC. Reducing the
required number of samples lowers computational demand,
a critical factor for real-time performance. This reduction
impacts four key stages of the CEM algorithm: (i) the creation
of random or deterministic samples; (ii) the determination
of the elite set; (iii) the computationally expensive trajec-
tory shooting, especially for complex system dynamics; and
(iv) the evaluation of cost functions for each trajectory and
all its stages. Furthermore, as hardware generally has limited
parallelization capabilities, even a slight reduction in sample
size can prevent substantial computational overhead. For
example, on such hardware, an algorithm requiring one more
sample than the hardware’s capacity can double the execution
time. By achieving superior performance with fewer samples,
dsCEM promises to apply MPC to systems with more complex
models and longer prediction horizons without sacrificing
real-time capability.

VI. CONCLUSION
In this paper, we addressed the limitations of random

sampling in CEM–MPC by introducing dsCEM, a novel
framework that leverages deterministic samples based on
LCDs. We proposed several schemes for integrating these
samples, demonstrating that this approach is a modular,
drop-in replacement for the conventional sampling step. Our
experimental evaluation on two nonlinear control benchmarks
showed that dsCEM consistently outperforms the state-of-
the-art iCEM method in terms of both cumulative cost and
control input smoothness, especially in the critical low-sample
regime. These findings highlight the potential of deterministic
sampling to significantly improve the efficiency of CEM–
MPC, making it a promising option for real-time control on
computationally constrained hardware.

As our approach is orthogonal to learning-based improve-
ments, a viable option is to combine dsCEM with these
techniques, e.g., using a learned policy to warm-start the op-
timization process and apply it to higher-dimensional robotic
systems.

REFERENCES

[1] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design, 2nd ed. Madison, WI, USA: Nob
Hill Publishing, 2017.

[2] C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek,
and G. Martius, “Sample-efficient cross-entropy method for real-time
planning,” in Proceedings of the 2020 Conference on Robot Learning,
vol. 155, Nov. 2021, pp. 1049–1065.

[3] R. Rubinstein, “The cross-entropy method for combinatorial and
continuous optimization,” Methodology And Computing In Applied
Probability, vol. 1, no. 2, pp. 127–190, 1999.

[4] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 2018, pp. 4759–4770.

[5] U. D. Hanebeck and V. Klumpp, “Localized cumulative distributions
and a multivariate generalization of the Cramér-von Mises distance,” in
Proceedings of the 2008 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI 2008), Seoul,
Republic of Korea, August 2008, p. 33–39.

[6] U. D. Hanebeck, M. F. Huber, and V. Klumpp, “Dirac mixture approxi-
mation of multivariate Gaussian densities,” in Proceedings of the 2009
IEEE Conference on Decision and Control (CDC 2009), Shanghai,
China, December 2009.

[7] M. Diehl, H. Bock, H. Diedam, and P.-B. Wieber, “Fast direct mul-
tiple shooting algorithms for optimal robot control,” in Fast Motions
in Biomechanics and Robotics: Optimization and Feedback Control.
Berlin, Heidelberg: Springer, 2006, pp. 65–93.

[8] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming,
ser. Modern Analytic and Computational Methods in Science and
Mathematics. New York, NY: American Elsevier Publ, 1970, no. 24.

[9] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in Proceedings of the First
International Conference on Informatics in Control, Automation and
Robotics, Setúbal, Portugal, 2004, pp. 222–229.

[10] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
Proceedings of the 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 1433–1440.

[11] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A
tutorial on the cross-entropy method,” Annals of Operations Research,
vol. 134, no. 1, pp. 19–67, Feb. 2005.

[12] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
Proceedings of the 36th International Conference on Machine Learning,
vol. 97, Jun. 2019, pp. 2555–2565.

[13] J. Watson and J. Peters, “Inferring smooth control: Monte Carlo
posterior policy iteration with Gaussian processes,” in Proceedings of
the 6th Conference on Robot Learning, vol. 205, Dec. 2023, pp. 67–79.

[14] T. Power and D. Berenson, “Learning a generalizable trajectory sam-
pling distribution for model predictive control,” IEEE Transactions on
Robotics, vol. 40, pp. 2111–2127, 2024.

[15] J. Steinbring and U. D. Hanebeck, “S2kf: The smart sampling Kalman
filter,” in Proceedings of the 16th International Conference on Infor-
mation Fusion (Fusion 2013), Istanbul, Turkey, July 2013.

[16] ——, “LRKF revisited: The smart sampling Kalman filter (S2KF),”
Journal of Advances in Information Fusion, vol. 9, no. 2, pp. 106–123,
December 2014.

[17] J. Steinbring, M. Pander, and U. D. Hanebeck, “The smart sampling
Kalman filter with symmetric samples,” Journal of Advances in Infor-
mation Fusion, vol. 11, no. 1, pp. 71–90, June 2016.

[18] C. A. León, J.-C. Massé, and L.-P. Rivest, “A statistical model for
random rotations,” Journal of Multivariate Analysis, vol. 97, no. 2, pp.
412–430, 2006.

[19] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall, Inc., 1993.

[20] S. Julier and J. Uhlmann, “Reduced sigma point filters for the propa-
gation of means and covariances through nonlinear transformations,”
in Proceedings of the 2002 American Control Conference, Anchorage,
AK, USA, 2002, pp. 887–892.

[21] M. Towers, A. Kwiatkowski, J. Terry, Balis et al., “Gymnasium: a
standard interface for reinforcement learning environments,” arXiv
preprint:2407.17032, 2024.

[22] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, 1983.

